治療を検査する
よりよい研究で、よりよい医療を
第2版

Imogen Evans, Hazel Thornton, Iain Chalmers, Paul Glasziou著
序文：Ben Goldacre
この本を、権威に挑戦し続ける勇気を私たちにもたらした William Silverman（1917-2004）に捧げます。

治療を検査する
よりよい研究で、よりよい医療を

初版 2006 年 The British Library
第 2 版初出版 2011 年 Pinter & Martin Ltd

Copyright © 2011: Imogen Evans、Hazel Thornton、Iain Chalmers、Paul Glasziou
Foreword © 2011: Ben Goldacre
Foreword to the first edition © 2006: Nick Ross

著者らは、1988 年の著作権、デザインおよび特許法に従い本書籍の著者として著作者
人権を主張します
すべての著作権は保護されています
出版物データは英国図書館に目録として登録されています
本書の目録記録は、英国図書館より入手可能です

ISBN 978-1-905177-48-6

この本は、出版された形式以外のいかなる装丁であっても出版社の事前の同意なしに、
取引やその他の方法、貸与、転売、貸出などで配布することを禁止する販売物です。ま
た、後の購入者にも同様の条件が課されます。

英国 TJ International 社、Padstow 社、Cornwall 社により印刷、装丁されました
この本は、紙持続可能な森林から収穫された原料で、FSC 認定を受けた紙に印刷されて
います

Pinter & Martin Ltd
6 Effra Parade
London SW2 1PS

www.pinterandmartin.com

Testing Treatments Interactive: www.testingtreatments.org
目次

監訳にあたって...v
著者の紹介..vi
謝辞 ...vii
日本語版 翻訳者一覧..viii
序文 ...ix
序文（第一版）...xii
前書き ..xiv
はじめに..xvi

第 1 章 新しいこと – それは良いことなのか？ .. 1
第 2 章 期待される効果が達成されていない .. 11
第 3 章 多ければ良いとは限らない .. 18
第 4 章 早ければ良いとは限らない .. 25
第 5 章 治療効果の不確実性にどう対処するか 41
第 6 章 正しい治療の検査について .. 53
第 7 章 偶然性を考慮する ... 70
第 8 章 信頼できる関連エビデンスをすべてレビューすること 76
第 9 章 臨床試験への規制はどこまで必要か 87
第 10 章 良い研究、悪い研究、そして不要な研究 95
第 11 章 公正な検証の実施は皆の責任 ... 107
第 12 章 何がより良い医療をつくるのか ... 117
第 13 章 正しい理由に基づく研究：より良い未来のための青写真 132
参考文献 ... 140
追加資料 ... 156
ビネットリスト ... 160
索引 .. 171
監訳にあたって

森 臨太郎・コクランジャパン・前代表

急激な人口高齢化や、より環境に配慮した持続可能な発展、そして、次々と生まれる新しい医療技術により、医療を含めた社会保障のあり方は方向転換が求められています。医療のあり方をこういった時代の流れに合わせて適切なものにしていく活動は、先進国、途上国問わず、全世界共通であり、さまざまな場で話し合われている状況です。

根拠に基づく医療、すなわち、客観的にしっかりとした研究結果に根差しつつ、医療における意思決定を患者・市民や家族、医療従事者を含めて、民主的な方法で進めていくことを提案してきた、コクランの哲学は、このような医療の改革の核となりつつある状況です。

そういった中、医療が真に患者や市民にとって、そして未来の市民社会のものになるために必要なのは、市民社会そのものが責任と力を持つことです。

コクランを設立したIain Chalmersは、コクランの活動を進める中で、結局は、市民に一人一人が自ら意思決定に参加するだけの力を持つことこそが、コクランの提唱した医療のあり方を進める意味で、最も大切な点だととらえ、コクランから離れられたあと、最も力を入れられてきました。

そのために書かれたこの本は、無料で公開され、内容はマルチメディアとしても発信され、何ヵ国もの言語に翻訳され、コクランの動きと裏表のようになって発展してきました。

10年以上も前にIain Chalmersから日本語翻訳のお話をいただいた時から、ずいぶん時間がたってきましたが、コクランジャパンの設立と同時に、翻訳に取り掛かることができ、感慨深くしております。

専門家ではなく、市民が、医療における診療方針が、どういう研究に立脚しているのか、どういう情報がより確かなものなのか、ということが分かりやすく書かれています。さまざまな場面で活用できますので、ぜひご活用いただければと思います。

もし内容に問題があったり、またこんな使い方ができるといったような発展のアイデアがあれば、ぜひコクランジャパンまでお知らせいただければと思います。

2019年9月25日
著者の紹介

Imogen Evans 氏は、カナダと英国で医学の実践と教育に従事した後、医学雑誌「The Lancet」で医療ジャーナリズムに携わった。1996年から2005年まで、Medical Research Councilに務め、後に研究倫理分野を経て、欧州バイオメディカル倫理委員会にて英国政府の代表を務めている。

Hazel Thornton氏は、マンモグラフィ検診を受けた後に、臨床試験への参加を促されたが、提供された患者のための情報が不十分なことを理由に参加を拒否した。しかし、それがきっかけとなり、患者にとって重要なアウトカムを得るための研究に対する市民参加への支援活動をはじめた。彼女はこのトピックについて、広く執筆や講演を行っている。

Iain Chalmers氏は、英国とパレスチナで医療を行った後、医療サービスの研究者になり、国立周産期疫学部門および、その後は英国コクランセンターで主導した。2003年以来、特に一般市民の参加を通して、より良いヘルスケアのために対照試験の改善を推進するジェームズ・リンド・イニシアチブを取りまとめている。

Paul Glasziou氏は、医学研究者でありパートタイムで家庭医でもある。研究と臨床のギャップに注目し、日々の臨床実践の中で質の高い研究を利用することの障害となる物を特定し、それを解決することに焦点をあてて取り組んでいる。2003年～2010年はBMJのJournal of Evidence Medicineのエディター、オックスフォードのCentre for Evidence-Based Medicineの所長を務めた。エビデンスに基づく実践に関連する数々の書籍の著者でもある。2010年7月より、ボンド大学でNational Health and Medical Research Council Australia Fellowshipを受けている。
謝辞

「治療を検査する」第2版の作成にあたり貴重なコメントをいただき、貢献してくださった以下の方々に感謝する。

Iain Chalmers と Paul Glasziou は National Institute for Health Research （英国）の支援に感謝します。また、Paul Glasziou は National Health and Medical Research Council （オーストラリア）の支援にも感謝する。そして、出版社である Pinter & Martin の Martin Wagner の寛容、励まし、冷静な判断に感謝する。
日本語版 翻訳者一覧

一般社団法人 マイインフォームド・コンセント
荒 真人
稲葉 一樹
河村 道雄
佐伯 雅代
佐伯 晴子

一般社団法人 日本癌医療翻訳アソシエイツ（JAMT for Cancer）
重森 玲子
山田 登志子
山岸 美恵野
ギボンズ 京子
宮武 洋子
生田 亜以子
今泉 眞希子
片瀬 ケイ
佐藤 純子
野中 希
鳥居塚 千恵（編集協力）

山本 依志子（国立成育医療研究センター）

監訳

森 臨太郎（前コクランジャパン代表）
渡辺 範雄（コクランジャパン代表／京都大学 大学院医学研究科）
佐々木 八十子（国立成育医療研究センター）
序文

医学は権威的な存在であってはいけません。どのような判断に対しても、「なぜ、そう言えるのですか」という問いかけこそ、誰もができる最も重要な質問です。この本は、その問いかけに答えるためにあります。

医療現場で働く人々の患者に対する姿勢は、大きく変わって来ました。ずいぶん前には「コミュニケーションスキルのトレーニング」は、お粗末ながら、がんで死にゆく患者に、どうやってそのことを伝えいか、くらいのものでした。今日では、学生に（これは授業で使われている資料からの引用ですが）いかに「患者と協力して、最適な健康状態に向けた成果を出すか」を教えています。今日では、もし患者が望むのであれば、医療はできる限りそれに応えて、患者が自身の治療の選択に関わることになるのです。

そのためにはすべての人が、どのようにして、治療が効くかどうかを知るか、治療による有害性があるかどうかを知るか、そしてどのように有益性と有害性を天秤に乗せてリスクを判定するか、を理解することが必須です。しかし、残念なことに、医師たちも他の多くの人と同じように、この知識が不十分です。さらに悲しいことに、私たちを惑わそうとする要因があちこちで待ち構えているのです。

こうした状況では、何よりも私たち自身が自らを欺いてしまうことがあります。ほとんどの病気は周期的にまたは偶然の作用で、良くなったり悪くなったりという自然の経過があります。症状が一番悪いときに行動を起こした場合、何をしたにしろ自然に経過が良くなってきただけでも関わらず、治療が効果的であったように見えてしまうということがあります。

同様に、プラセボ効果も私たちを惑わすものの1つです。なんの有効成分も含まれていない偽薬を服用しているのに、その治療効果を信じることで、本当の治療効果が現れることもあります。Robert M. Pirsig氏が「Zen and the Art of Motorcycle Maintenance（禅とオートバイ修理技術）」の中で、次のように述べています。「科学的手法の真の目的は、自然の力に騙されて、実際には自分が理解していないことを理解しているかのように誤解するのを防ぐことである」。

しかしその一方で、科学的研究を振りかざす人々も存在します。もし、この本から1つの重要なメッセージをあげるとすれば、借りてきたフレーズで自分に何度も言い聞かせている言葉ですが、「公正な検証」という概念です。科学的研究が同じではありません。科学的な研究の一環にバイアス（偏り）が生じる可能性は数多く、誤ってどこかで誰かが考えたことが、「正解」とされてしまうことがあります。

またしばしばエビデンス（判断のもととなる根拠）は、意図せずに、または純粋な動機（すべての動機が問題となる可能性がある）をもって歪められることがあります。医師、
患者、教授、看護師、作業療法士、そして管理者らは全員、自分の情熱を注いで見つけ出した1つの治療法が一番素晴らしいという考えに固執してしまう可能性があります。

またエビデンスは他の原因でも歪められることがあります。製薬企業に関して底の浅い陰謀論に陥ってしまうことは間違いないでしょう。製薬会社は命を救う大きな進歩をもたらしてきました。しかし、研究の中には巨額の資金が使われているものもあり、この本の中にみられるように、90%の臨床研究は企業により実施されているのです。このことが問題になる場合があります。研究が企業によって行われる場合、独立して行われる試験と比べて、スポンサーの薬に都合の良い結果が4倍以上出やすい傾向があります。確かに、新薬が市場に出るまでに8億ドルの費用がかかり、そのほとんどは薬が市場に出回る前に費やされます。もし、薬に効果がないことが判明しても、その資金はすでに使われてしまっているのです。投資した金額が大きければ、公正な検証といった理想が無視される可能性もあります。

同様にエビデンスは、伝えられる方法によっても歪められ、誤解を生むことがあります。事実や数字を述べるとき、全体ではなく一部しか述べない、欠陥をままならず、1つの治療法を特別扱いして、科学的エビデンスの「良い結果だけを取り上げる」ことがあります。

しかし、一般社会の中では、さらに興味深い現象が起きます。研究とは通常1つ1つはそれほど大きくない科学の進歩であり、リスクを少しずつ軽減させ、また主観的な判断を終わらせようとするものです。しかし、私たちはどうしても、奇跡的な治療法を望んでしまいます。メディアは、「治癒」、「奇跡」、「希望」、「新発見」や「犠牲者」などという言葉を乱発して、そういった研究の本質を放棄してしまうことがあまりに多いのです。

多くの人が自身の生き方を自分でコントロールし、医療でも自分で意思決定に関わりたいという時代に、そのような歪められた多量の情報ばかりをみるとのは悲しいことですし、力を失うことにしかなりません。しばしばこういった歪められた報告はある特定の薬にみられることがあります。英国のメディアがハーセプチンを乳がんの特効薬とした報道が、最近一番よく引用される例です。

しかし、自分の推し進める治療に対し、相反するエビデンスがあり排除しようとするととき、自分の治療を信じて疑わない人は知り合いのメディア関係者に働きかけて、何が良くても、何が悪いといえる人々の理解を実際に損なわせることで、被害をさらに大きくすることがしばしばあります。

最も公正に行われた臨床試験によると、ホメオパシーで使われる砂糖でできた薬は、普通の砂糖の偽薬と比べて何の優位性も認められません。しかし、このエビデンスをみたとき、ホメオパシーの施術者は、臨床試験の概念そのものに問題があり、ホメオパシーでは独特な方法で薬を使用するため、臨床試験が適用できない複雑な理由があるのだと主張します。また、政治家は自分が素晴らしいと思っている、10代の妊娠を予防する教育プログラムが上手くいかなかったときに、同じような弁解をするでしょう。効果を主張する介入は、実際にはこの本が示すように、すべて透明性のある公正な試験の対象となります。
しばしばこういった曲説は、一般社会の理解をより深く損なう可能性があります。最も公正で偏りがないとされる最近の「系統的（系統的）レビュー」では、抗酸化ビタミン剤を服用することで寿命を延ばすエビデンスはないことを示しています（実際には寿命を短くすることさえあります）。この本の中で素晴らしく説明されているように、この種のレビューでは、どこにエビデンスを求めたか、どのようなエビデンスを含めたか、エビデンスの質をどのように評価すべきかを記述した明確なルールが守られています。しかし、系統的レビューが抗酸化サプリメントの製薬会社の主張に反する結果を生むと、政治的判断や利益のために、系統的レビューの個々の研究が選択的に「都合の良い結果だけを取り上げているとか、肯定的なエビデンスが意図的に無視されているなどの主張がなされ、新聞や雑誌は虚偽の批判で埋め尽くされます。

これは残念なことです。「エビデンスを総合的に検討する」系統的レビューという概念は、過去30年間、医療における最も重要なイノベーションの1つです。一握りのビジネスを守るために、こういった概念に一般の人をアクセスさせないことで、ジャーナリストと製薬会社は私たちを総合的な検討から大きく距離をとらせるのです。そしてそれは大問題なのです。本書を読むべき理由はたくさんあります。最も明快な理由は、自分の健康について、より多くの情報を基にして自分で決定するのに役立つことです。あなたが医療従事者であるならば、このあとの章はおそらくエビデンスに基づく医療として学んだことより、はるかに優れた内容でしょう。社会的には、より多くの人が治療を公正に比較することを理解し、どちらの治療が良いか調べるようになれば、著者が述べているように、一般の人々も研究を恐れるのではなく、治療法の不確実性を減らすという自分たちにとって重要な目標に向かって積極的に取り組めるようになるでしょう。

最後にもう1つ理由があります。この本を読むことで、実用性とは関係ありませんが、よく書かれた本がどういうものかを知ることができます。端的に言って、面白い内容で、申し分のない、素晴らしい本なのです。この本には、著者の経験、知識、共感があふれており、私がこれまでに読んだどの本よりも上手く書かれています。

本書「治療を検査する」は、実生活で人々が持つ疑問に焦点をあてます。医学とは、人間の苦しみと死だけでなく、意思決定者や研究者の人間の弱さにも関するものであり、研究者の個人的な経験や疑念、その動機、懸念、意見の変化などもここに含まれています。科学のこういった側面を一般の人が垣間見ることはまれです。しかし著者は、真面目な学術論文から医学関連のちょっとした文章、学術論文の行間からうかがえる議論、評論、自伝や余談などを自由に見つけ出しています。

この本は、すべての学校や病院の待合室に置いておくべきです。それまでには、あなたのものです。さあ読み進めてください。

Ben Goldacre
2011年8月
序文（第一版）

これは私たちの健康にとって有益な本です。謎に満ちた、生と死を分ける決定の過程に光をあてるものです。時にはその決定には大きな欠陥があることを示し、世界中の医師に自らの方法を改めるよう促すでしょう。

本書は、不必要に恐れることなく、こうした課題を率直に提示しながら、現代医学が達成した多くの進歩に賞賛を送っています。意図するところは、常に臨床医学を向上させることであり、それを否定するものではありません。

私自身が医学が保守的ですらであることを初めて理解したのは、1980 年代に乳がんの治療における最善の治療を判定するために設立された委員会に非専門家メンバーとして加わったときでした。私はショックを受けました（この問題の詳細は第 2 章 [新版では第 3 章を参照]）。研究や臨床家の第一人者からのエビデンスをみましたが、最も著名な専門家であっても、直感や全くの先入観で治療を行っており、乳がん患者の生存率や、外観を大きく損ねる外科的手術を行うかは、担当医師と、その医師の先入観次第だと知ったのです。1 人の外科医は大胆な切除を、別の医師は単純に腫瘍の除去のみを、さらに別の医師は積極的な放射線療法を好んで選択するという具合でした。まるで科学的な評価などスルーされているようでした。

実際に、以前もそうでしたが、今でも多くの医師がそうしています。状況は改善されてきましたが、驚くべきことに、多くの医師が自分たちの経験で治療を行っているから、最も著名な専門家であっても、直感や全くの先入観で治療を行っており、乳がん患者の生存率や、外観を大きく損ねる外科的手術を行うかは、担当医師と、その医師の先入観次第だと知ったのです。1 人の外科医は大胆な切除を、別の医師は単純に腫瘍の除去のみを、さらに別の医師は積極的な放射線療法を好んで選択するという具合でした。まるで科学的な評価などスルーされているようでした。

実際に、以前もそうでしたが、今でも多くの医師がそうしています。状況は改善されてきましたが、驚くべきことに、才能のある多くの誠実で熟練した医療従事者でも、良質な科学的エビデンスがどうやって成り立っているのか、ほとんど知識がありません。彼らは、医学部で教えられたから、他の医師がやっているから、あるいは自分の経験でそれが効果があったからという理由で治療を行っています。しかし、標準的な経験はそれらしく見えても、この本が残酷なほど明確に示すように、しばしば著しく間違った方向に導いてしまうことがあります。

一部の医師は、個々の患者の治療に科学を厳密に適用するのは難しいと言います。医学は科学であり技術でもあると彼らは主張します。しかし、それは言葉の矛盾です。確かに医学知識は有限であり、個人が持つ複雑性は無限なため、常に不確実な要素があります。実際、良い医療には日常的に頼ることが求められます。今まであまりにも多くの場面において、多くの医師専門家が自分たちの経験を信じることと良いエビデンスとの区別を曖昧にしてきました。実際にはかなりの疑問が残るときでも、確実であると断定することさえしばしばありました。確実にデータを評価する方法を知らないために、信頼できるデータを意図的に避けるのです。

この本は、個人的な経験と、より複雑な医療では、何が有効で何が無効であるのか、また何が安全で何が安全でないのかの違いを見極めるためのより良い方法の違いについて説明しています。できる限り専門用語を避け、「公正な検証」のような平易な表現を使ってい
ます。科学が、人に関するすべての事と同様に、過ちや偏見（間違いや虚栄心、また特に医学では悪質とされているスポンサーの要求）を起こしだちな点について、本書は注意を喚起しています。しかしながら、人間の知識の中で最も顕著な進歩のほとんどを作り出したのは、科学の綿密なアプローチであることも気づかされます。医師（そして私のようなメディアの人間）は、臨床研究を「人間をモルモットとして扱う試験」と中傷するのをやめるべきです。むしろ、すべての医療従事者は患者に対して公正な試験を促し、参加を求めていく道義的な責任があります。

これは、自分や家族の健康に不安を抱えている人、または医療政策に関わる人にとって重要な本です。患者はしばしば参加者ではなく、医療を受ける人とみなされます。今後の取り組みは、医師や医療研究者だけでなく、私たち一般市民の肩にもかかっています。医療は一般市民のためにあり、医療従事者に料金を支払っているのも私たち市民です。私たちが医療を受け身で利用する限り、決して標準的となる治療は進歩しません。私たちが単純な答えを望むならば、偽りの科学が生じることになるでしょう。私たちが厳密に治療を検証していかなければ、実際に効果のある治療とともに、的外れで、時に危険な治療も受け入れてしまう可能性があります。

この本には、患者を中心にさまざまな状況を改善するためのマニフェスト（宣言）が含まれています。しかし医者、医学生、研究者にとっても重要な本であり、ここに書かれた教訓から学ぶことがあるでしょう。理想的には、すべてのジャーナリストの必読書とし、またすべての患者が利用できるようにすべきでしょう。なぜならば、医者が科学的なエビデンスを不適切に評価した場合、概して私たちの病状は悪化し、死亡率を左右する事態が生じるからです。

私は1つ約束します。本書「治療を検査する」を初めて読んだ人は、今後の医師のアドバイスが、全く違ったもののように感じることでしょう。

Nick Ross
TV and radio presenter and journalist
2005年11月16日
前書き

2006年に出版された「治療を検査する」の初版は、「どのように患者のニーズを最も満たす医学介入に関する研究を実施できるのか？」という疑問からインスピレーションを得て生まれました。医師・元研究者・ジャーナリストのImogen Evans氏、患者であり非医療従事者の立場から第三者として研究と医療の品質向上の支援活動を行っているHazel Thornton氏、および医療サービスの研究者のIain Chalmers氏はそれぞれの経験から、これまでの研究が、この重要な問題に応えていないという考えを共有していました。さらに、私たちは、新旧両方の多くの治療が適正なエビデンスに基づいていないことを強く認識していました。そこで、患者と医療専門家の対話を促すことで、肝心な治療効果を一般の目で検証することを推進する本を書くことにしました。

私たちは、「治療を検査する」を当初のBritish Library出版からの本および、オンライン(www.jameslindlibrary)で一般に無償公開した際に受けた反響の大きさに勇気づけられました。本書は一般市民からも、医療従事者からも評価を得ました。初版は、多くの国で副教材として使われており、いくつかの言語の翻訳版もwww.testingtreatments.orgから無料でダウンロードできます。

当初から、私たちは「治療を検査する」を常に進行中の取り組みとして考えました。新しい治療、昔からある治療にかかわらず、治療法の効果にはほとんど常に不確実性が伴うため、すべての治療の適切性について継続的な検証が必要です。これを行うには、科学的エビデンスを検討し、またその後再検討することが不可欠です。新しい研究に着手する前に既存のエビデンスを批判的かつ系統的にレビューし、同様に最新の系統的なレビューに照らして新しい結果を解釈することが不可欠です。

「治療を検査する」の第2版に着手するにあたり、著者は日常の臨床への質の高い研究エビデンスの導入に注力している医師で研究者のPaul Glasziou氏を加えて4人になりました。

2010年に新しい出版社Pinter＆Martinより初版が復刻されました。また新しいテキストは、以前と同じようにwww.testingtreatments.orgから無料で入手できます。

私たちの基本的な前提は変わりませんが、初版のテキストを大幅に改訂し、更新していきます。例えば、スクリーニングの有益性と有害性の部分を拡大し、「早ければ良いとは限らない」と題した別途の章(第4章)で記述しています。そして、「臨床試験への規制はどこまで必要か」(9章)では、研究が患者の利益を脅かし過ぎる状況について述べています。最後から2番目の章(12章)では、「何がより良い医療をつくるのか」を考え、科学的エビデンスがすべての人に本当の違いを生み出す道を示唆します。そして、より良い未来と行動計画(13章)のための青写真で締めくくります。

本書では、どうしたら治療を公正に検証することができるのか、そして、いかに誰もが参加できる仕組みを整えるのかについて、広く理解する方法を提起したいと考えています。
これは、個々の治療効果に対する「最良の治療ガイド」ではありません。むしろ、研究が公正、適切に行われ、有益な治療法を有害な治療法から識別することができ、患者、一般市民および医療従事者にとって重要な疑問に答えるようにする上で、根本的な課題に焦点をあてています。

Imogen Evans, Hazel Thornton, Iain Chalmers, Paul Glasziou
2011年8月
はじめに

「自然界のあらゆる複雑な出来事をすべて観察する方法はない。私たちの知識は有限だとKarl Popper氏は強調したが、私たちの無知は無限だとも言える。医学において、治療介入の結果を確信することは決してできない。私たちにできるのは、不確かさの範囲を狭めることだけだ。この認識は、それほど悲観するべきことではない。何度も手ごわい批判を受け、それに耐えている主張は信頼できる。こうした『実際的な真実』が日々の臨床活動をしっかりと支える基礎的要素である」。

現代医学は、大きな成功を収めてきました。抗生物質がない生活を想像するのは困難です。その他にも有効な薬剤の開発は、心臓発作および高血圧の治療に革命をもたらし、統合失調症を持つ多くの人々の生活を変えてきました。小児期の予防接種は、ほとんどの国でポリオとジフテリアを遠い過去の問題に変え、人工間節は無数の人々が抱える苦痛や障害を和らげました。超音波、コンピューター断層撮影（CT）、磁気共鳴画像（MRI）などの最新の画像技術は、患者が正確に診断され、適切な治療を受けることに役立ててきました。さまざまなのがんの診断もかつては死の宣告でしたが、今では生死をささやうことなく、普通に日常生活を送る患者も多くいます。そしてHIV／AIDS（ヒト免疫不全／後天性免疫不全症候群）は、死の病から（長期的に続く）慢性の病気に大きく変わりました。

もちろん、水道による安全な水の供給、衛生設備、より良い住宅など、社会的な、そして公衆衛生の進歩により、健康における多くの改善が実現しました。しかし、どんなに疑り深い人でも、現代医療の大きな影響を否定することは難しいでしょう。過去半世紀ほどで、より優れた医療は寿命の延長に大きく貢献し、特に慢性な病気を抱える患者のQOL（生活の質）を向上させています。

しかし、現代医学の大成功の陰で、現存する多くの問題が見落とされています。今日でも、あまりにも多くの医学上の意思決定が貧弱なエビデンスに基づいています。患者に害を及ぼしている治療法はいまだ多く、実証されていないか有益ではないものもある、価値があるのに十分に使用されていないものもあります。毎年、治療の効果に関する研究が多数の結果を生み出しているのに、なぜこのようなことが起こるのでしょうか。残念なことに、エビデンスはしばしば信頼できず、さらに、行われた研究の多くは、患者が求めてている質間に応えていません。
治療の効果が明らかに確かであったり、あるいは症状が劇的に良くなったりすることが滅多に見られないのも問題の一端です。このため普通は、新しい治療法でどれほど良くなろうか、実際に有害性よりも有益性が上回るかどうかに不確かさが存在するのです。バイアス（偏り）を減らし、偶然性を考慮に入れた慎重な設計による公正な検証が（第6章を参照）、治療効果を確実に見極めるために必要です。

病気にかかって治療を受けるときに、何が起こるのかを正確に予測することはできないことをFranklinの法則と呼びます。これは18世紀の米国の政治家Benjamin Franklin氏による「この世界で死と税を除いては、確信できるものは何もない」という言葉が由来です3。しかし、このFranklinの法則は、社会における第2の習性ととらえられています。不確実性が残ることはやむを得ないとする考えは学校で十分に教えられておらず、エビデンスの入手と解釈の方法、確率やリスクに関する情報を理解する方法など基本的な概念を学びません。ある評論家は、「学校では、試験管内の化学物質、動きを表す数式、光合成に関するちょっとしたことを教えられた。しかし、死に関すること、リスク、統計、そして科学で人が死に至る、あるいは治癒することについては何も教えられなかった」と書っています4。健全な科学的エビデンスに基づく医学の実践が無数の命を救ってきたのにかかわらず、科学的研究の主要な原理を説明する展示をしている科学博物館はないのです。

不確実性とリスクの概念は本当に重要です。例えば、「存在しないことを証明する」こととは論理的に不可能です。つまり、何かの存在を否定することや、治療に効果がないことを示すことはできません。これは単なる哲学的議論ではありません。それは、ベンデクチ

不確実性とリスクの概念は本当に重要です。例えば、「存在しないことを証明する」こととは論理的に不可能です。つまり、何かの存在を否定することや、治療に効果がないことを示すことはできません。これは単なる哲学的議論ではありません。それは、ベンデクチ
ン（活性成分ドキシラミン、ピリドキシンまたはビタミンB6）と呼ばれる複合薬の出来事が示すように、実際に重大な影響が生じたことでもわかります。ベンデクチン（市販名はDebendoxとDiclectin）は、妊娠初期の吐き気を和らげるために女性に広く処方されていました。その後、ベンデクチンが先天性障害を引き起こしたとの主張が出、すぐに訴訟の標的となりました。ベンデクチンの製造者は、山のような訴訟の圧力を受けて、1983年にこの薬剤の販売を中止しました。その後、エビデンスのいくつかをレビューしたところ、先天性障害との関連性を裏づけるものではなく、結論的に有害ではないことを示すことはできませんでしたが、害を及ぼすエビデンスもありませんでした。皮肉なことに、ベンデクチンが回収された結果、姦婦のつわり症状のための治療は、先天的障害を引き起こす可能性について詳細が判明していない薬だけが使用できる結果となりました。

通常、研究で可能なことと言えば、少しずつ不確実性を取り除くことです。医療は有効でも有害でもあります。適切に実施された良い研究は、健康課題に対して治療と、他の治療や無治療とを比較することによって、その治療が有益となるか、有害となるかの確率（見込み）を示すことができます。不確実性は常に存在するため、白か黒かのどちらかで物事を判断することは避けるべきです。確率論的に考えることが力となります。

人々は病気の転帰について見込みを知る必要があります。例えば、高血圧による脳卒中の発症率に影響する要因、そして、脳卒中の発症率を変える治療の可能性などです。信頼できる情報が十分にあれば、患者と医療従事者は協力して、治療による有益性と有害性のバランスを評価することができます。患者の好みや個々の状況に応じて最も適切な選択肢を選ぶことができます。

本書における私たちの目的は、コミュニケーションを改善し、医療に対する患者の信頼を高めることであり、損なうことではありません。しかし、これは、患者自身と医療従事者が治療の選択肢を批判的に評価できるときに成立する話です。

第1章では、治療の公正な検証が必要な理由と、新しい治療法で予期しない有害な影響がどのように起きるのかについて簡単に説明します。

第2章では、その他の治療法で期待された効果がなぜ実現しなかったかを述べ、よく使われる多くの治療法が適切に評価されていないという事実に注目します。第3章では、より集中的な治療が必ずしも優れていない理由を説明します。第4章では、病気の早期発見について健康者をスクリーニングすることが、有益なこともある有害もある理由を説明しています。第5章では、医療を取り巻くすべての側面に広がる多くの不確実性のいくつかに注目し、それらに取り組む方法を説明します。

第6章、第7章、および第8章では、「技術的な詳細」を専門的な表現を用いずに説明しています。第6章では、治療法の公正な試験の基礎を概説し、似たようなもの同士を比較することの重要性を強調します。第7章では、「偶然の作用」を考慮する必要性を強調しています。第8章では、すべての信頼できるエビデンスを系統的に評価することが重要である理由を説明します。
第9章では、研究倫理委員会やその他の機関による治療効果研究を規制する制度が、なぜ研究を進める上での障害になるのか、その結果、なぜ規制が患者の利益追求を促進できないのかを説明しています。第10章では、良い研究、悪い研究、そして不要な研究が治療効果にもたらす主な違いを示します。研究は商業的および学問的な優先事項によってしばしば歪められ、患者の健康的な生活に実際に貢献しうる問題に取り組んでいないことを示します。

第11章では、治療に対するより良い検証を確実に行うために、患者や一般の人々に何ができるかを示しています。第12章では、個々の患者のためのより良い医療のために研究から得られた堅実なエビデンスを本当に役立てる方法を検討しています。そして第13章では、より良い未来のための書写真を提示し、行動計画を完成させます。

各章はいくつかの主な資料を参照して、それとは別に「追加資料」セクションが本の末尾に含まれています。問題をより詳細に探究したい人は、James Lind Library（www.jameslindlibrary.org）を参照するところから始めてみてください。

本書の第2版の無料電子版は、新しいウェブサイト- Testing Treatments Interactive（www.testingtreatments.org）に掲載されています。今後、翻訳版やその他の資料もこのサイトに追加される予定です。

私たち著者は、人々のニーズに応えられる効果的な医療への平等なアクセスの原則を実現するために尽力しています。これは社会が果たすべき責任であり、健全な研究から得られた試験や治療の効果に関する、信頼性が高いアクセス可能な情報に依存します。医療資源はいずれも限られているため、人類全体が医療の進歩から恩恵を受ける機会を得ようとするなら、治療は確固たるエビデンスに基づいて、効率的かつ公正に使用される必要があります。ほとんど有益性が認められない治療に貴重な資源を浪費したり、ほとんど知られていない治療を評価する機会を正当な理由なく却下したりすることは無責任なことです。したがって、治療の公正な検証は、私たち全員に平等な治療選択を可能にする上で、根本的に重要なものなのです。

読者の方々は本書のテーマに対する私たちの熱意に同意してくださいることを願ってやみません。どうか治療についてどんな質問でもして、医学知識を身につけ、自分自身そして他の人の利益になる答えを見つけるために研究に関わってください。
第1章 新しいこと – それは良いことなのか？

なぜ治療には公正な検証が必要なのか

偏りのない公正な評価がなければ、役に立たないか、または有害な治療が処方されてしまう可能性があります。そうした治療が有益だとみなされ、逆に、有益な治療法が役に立たないとみなされることもあります。また、その治療の成り立ち、従来型または補完型／代替型にかかわらず、すべての治療に対して公正な検証が行われるべきです。いかに説得力のある治療であっても、検証されていない理論は不完全です。理論上、有効だと予測された治療法も、公正な検証で効かないことが明らかになったり、他の理論で絶対に効かないと予測された治療が、検証によってその有効性が示されたりします。

治療においても洗濯洗剤の広告と同様に、必然的に「新しい」を「改善された」という意味にとらえる傾向があります。しかし新しい治療が公正な検証で評価されるときは、既存の治療より良い結果ではなく、悪い結果が出る可能性もあります。長い間使われてきた治療なので、安全で効果的だろうと考えるのも、同じように自然な傾向です。しかし、習慣に基づいた、確かな信憑性あるエビデンスのない治療法を用いた医療は、しばしば良い効果どころか、時には重大な害を及ぼします。

公正な検証の必要性は、何も目新しいことではありません。18世紀に James Lind 医師は、当時、壊血病の治療に使われていた6つの方法に対し、公正な検証をしました。壊血病は、長期の航海中に膨大な数の船員の死亡原因となった病気です。同医師は、後にビタミンCを含んでいることが明らかになったオレンジとレモンが、非常に効果的な治療法であることを示しました。
体験談はもとより体験談である

「私たちの脳は体験談にこだわりを持つようで、ある話に説得力があれば簡単に受け入れてしまう。私自身の多くの友人も含めて、大多数の人がここに落とし穴が潜んでいると気づかないと愕然とする。科学は、実話や個人の体験談が致命的な誤解を招く可能性があることを知っている。科学は、検証可能で再現性のある結果を求めるのである。一方、医学において科学ができることには限界がある。個々の患者における多様性があまりに大きく、確信が得られずに悩むといった余地ができてしまう。しかし、境界線は明確にすべきである。境界線を越えるとすぐに科学の本質は裏切られる。結果に至るまでに近道をししまい、事実と意見が混ざり合い、何が事実かわからなくなるのだ」

1747年、James Lind医師は、英国海軍ソールズベリー艦の船医として乗船している間、病状がほぼ同じ12人の患者を集め、1つの場所で同じ食事をとるようにしました。これは「同じ条件で検証する」という考えを生み出す、極めて重要な点です（第3章p.21「ランダム割り付け-簡単な説明」および第6章を参照）。Lind医師はその後、当時、壊血病の治療に使われていた6通りの治療薬である、リンゴ酒、硫酸、酢、海水、ナツメグ、オレンジ2個とレモン1個、のいずれかをそれぞれ船員2人ずつに与えました。果物が圧倒的に優れた効果を示しました。英海軍ではその後、レモン汁をすべての船に供給するよう命じました。その結果、18世紀末までは、英国海軍から壊血病が消滅しました。Lind医師が比較した治療法のうち、かつて英国内科医師会は硫酸を推奨し、海軍は酢を推奨していましたが、同医師の公正な検証によって両方の当局とも間違っていたことが示されました。意外かもしれませんが、影響力を持つ政府当局の判断は、かなり頻繁に間違いっているのです。公正な検証の結果ではなく、意見、習慣、または先例に過度に依存することは、医療において深刻な問題を引き起こし続けています（下記、第2章を参照）。
ジェームズ・リンド医師（1716-1794）、スコットランドの海軍外科医。彼の執筆本、最も有名な執筆本のタイトルページ。オレンジとレモンが5つの他の治療よりも効果的な治療であることを示した1747年の対照試験（www.jameslindlibrary.orgを参照）。

今日、特定の病気に対して最良のアプローチが何か医師および他の医療従事者が異なる見解をもつ場合、治療効果の不確実性が強調されます（第5章を参照）。これらの不確実性に対処するにあたり、医師だけでなく、患者や一般の人々も重要な役割を果たすのです。治療に関する研究の厳格性は、専門家だけでなく、患者にとっても大きな関心事です。医療の従事者が、推奨されている治療が正当なエビデンスに基づいているという証拠を持つ必要があると同様に、患者もそうした治療を求める必要があります。この重要なパートナーシップがあってこそ、現代医学の恩恵に一般の人々が信頼を寄せることができるのです（第11章、第12章および第13章を参照）。
予期せぬ悪影響

サリドマイド

サリドマイドは、新たな治療として有益性よりも有害性を生み出てしまった特に悲惨な例です1。この睡眠薬は、当時しばしば処方されていたバルビツール酸塩に代わる、一見安全な代替薬として、1950年代後半に導入されました。バルビツール酸とは異なり、サリドマイドは適量摂取しても昏睡に至りませんでした。つわり症状を緩和するため、サリドマイドは特に妊娠中の女性に勧められました。

その後1960年代初めに、産科医は腕や脚に重度の奇形をもった新生児の急激な増加に気づきました。それまではまれだった、極度に短い手足が身体から直接でているような症例でした。ドイツとオーストラリアの医師は、これらの乳幼児の奇形を、母親が妊娠初期にサリドマイドを服用していたという事実と関連づけました2。

新生児の悲劇的な失明が流行

第二次世界大戦直後、早産児の発育を改善するために多くの新たな治療法が導入された。その後数年の間に実施された数多くの介護医療の変化が、予期せぬ有害な影響をもたらしたことが、痛々しいほど明確になった。悲劇的な臨床経験の中で最も顕著なもののは、1942〜54年の失明、後天性線維化症の「流行」である。この障害は、発育不全の新生児のケアにおける補充酸素の使用に関連していることが判明した。この大流行を止めるのに12年間苦労したことによって、すべての最先端医療が一般に使用するため認可される前に計画的評価が必要であることが明らかになった」。

1961年の末に、製造者はサリドマイドの販売を中止しました。何年も後に、公的なキャンペーンと訴訟の末、被害者は補償を受け始めました。これらの重い障害の犠牲者数は膨大で、サリドマイドが処方された46カ国以上の国々（薬局で売られた国も）では何千人もの乳児が奇形で誕生していました。サリドマイドの悲劇は、医師、製薬業界、患者を震撼させ、医薬品開発とライセンス供与のプロセスが世界的に見直されました3。
医薬品検査の規制が厳格化されつつあるとはいえ、最良の検査の実践があっても、安全性が絶対的に保証されるものではありません。非ステロイド性抗炎症薬（NSAID）は、なぜ医薬品について警戒が必要なのか良い例を示しています。

NSAIDは痛みを緩和し、さまざまな疾患（例えば、関節炎）における炎症を軽減するために、また発熱を伴う患者の体温を下げるために一般的に使用されます。「従来型」のNSAIDにはアスピリンやイブプロフェンなど、薬局で入手可能な多くの薬が含まれています。副作用としては、胃や腸の炎症を起こし、消化不良や、時には、出血や胃の潰瘍に至ることがよく知られています。その結果製薬会社では、これらの合併症を起こさないNSAIDの開発に関心が集まりました。

一般名ロフェコキシブ（市販名Vioxxが最もよく知られる。Ceoxx、Ceeoxxとしても販売）は1999年に、それ以前の化合物の代わりに安全性の高い代替薬として導入されました。すぐに広く処方されるようになりましたが、5年もしないうちにVioxxは製造業者によって市場から回収されました。心臓発作や脳卒中などの心血管合併症のリスクが高まったからです。何が起きたのでしょうか。

Vioxxは、変形性関節症の徵候および症状の軽減、成人の急性疼痛の管理、および月経症状（月経期間の痛み）の治療薬として、1999年に米国食品医薬品局（FDA）に承認され、後に成人と子どもの関節リウマチの徵候と症状の緩和にも適用が拡大されました。Vioxxの開発中、製薬会社の研究者は、血栓のリスク増加につながる血液凝固メカニズムに対する有害な影響が潜在していることを認めた。しかし、医薬品承認の目的でFDAに提出された概して小規模の試験は、Vioxxの抗炎症効果のエビデンスに集中しており、合併症の可能性を検討するようでは設計されていませんでした。

FDAの承認前に、同社はすでにナプロキセン（別のNSAID）を服用しているリウマチ性関節炎患者との比較で、胃腸の副作用を検討するために設計された大規模な研究を開始していました。しかしこの研究も、心臓血管合併症を検出するために特に設計されたものではありませんでした。さらに、この試験のデータ安全性モニタリング委員会メンバーの利益相反に対する疑惑が、後に提起されました。（委員には、研究で蓄積される結果をモニターし、研究を中止する理由がないかを確認する責任があります。）

Vioxxは、ナプロキセンよりも胃潰瘍および消化管出血の事例が少ないことを示していたものの、Vioxx群においてより多くの心臓発作が発生したことも明らかでした。主要な医学誌に掲載された研究報告に対し、大きな批判が寄せられました。心血管リスクの深刻さを軽視するような形で、試験結果を分析、報告していたからです。この医学ジャーナルの編集者は後に、研究者がこれらの副作用に関する重要なデータを出し控えていたと訴えました。2000年に研究結果がFDAに提出され、2001年に関節炎諮問委員会で審議された後、FDAは2002年に最終的にVioxxの安全情報ラベルについて、心臓発作および脳卒中のリスクが増加することを示すよう改訂しました。
製薬会社はVioxxの他の用途を引き続き研究し、2000年に結腸直腸（下部消化管）ポリープ（結腸直腸がんに進行する可能性のある小さな良性腫瘍）の予防効果を調べる試験を開始しました。この試験の中間結果により、この薬が心血管合併症のリスク増加に関連することがわかり早期中止され、製薬会社は2004年にVioxxを市場から引き上げました。発表された報告書によれば、この研究の著者は、製薬会社に雇用されていたか、コンサルティング料を受け取ってVioxxの使用開始18カ月後までには、心血管合併症は現れなかったと主張しました。この主張は、欠陥のある分析に基づいており、その後、報告書を公表したジャーナルによって正式に修正されました。その後、多数の患者からの訴訟に直面しても、製薬会社はVioxxの承認前の試験から市販後の安全モニタリングに至るまで、常に責任ある対応をしたと主張し続けています。さらに同社は、Vioxxではなく、既存の心血管リスク因子が原因であることを示すエビデンスがいずれ現れるとの考えを再度主張しました。

Vioxxのスキャンダルは、サリドマイドの半世紀後に起こりましたが、治療法の公正な検証、透明なプロセス、堅実なエビデンスを保証するには、まだまだ多くの対策が必要なことを示しています。あるグループの評論家は、「私たちのシステムは、患者の利益を最優先するものです。患者ケアに関する知識の向上改善には、学者、医師、産業界、医学誌の連携が不可欠です。信頼関係がこのパートナーシップに必要不可欠ですが、最近の出来事によって患者の利益を保護する適切な制度を設ける必要性が示されました。すべての関係者がこうした制度づくりへの決意を新たにすることこそ、この不幸な事件から肯定的なものを生み出す唯一の方法です」と主張しました。

Avandia

2010年には、Avandiaという市販名で知られているロシグリタゾンという薬が、心血管系に関連する望ましくない副作用のために注目を集めました。Avandiaはそれより十年前に、2型糖尿病治療の新たなアプローチとして、欧州および米国の医薬品規制当局から承認を得ました。このタイプの糖尿病は、体内で十分なインスリンが生産されない場合や、体の細胞がインスリンに反応しない場合に発生します。1型糖尿病よりはるかに多い病気です。2型糖尿病は、しばしば肥満に関連しており、通常、食生活の改善や運動により、インスリンを注射しなくとも、経口の薬剤で十分治療することができます。2型糖尿病の長期的な合併症には、心臓発作や脳卒中のリスク上昇などがあります。治療の主な目的は、これらの合併症のリスク軽減です。

Avandiaは、体内のインスリンがより効果的に働くよう促す新たな方法で効果を示すため、血糖値を抑制する従来の薬よりも優れていると言われました。ここでは、血糖値の抑制よりも苦痛や最終的には死亡に至る重篤な合併症に焦点が置かれていませんでした。

Avandiaが承認されたとき、その有効性についてのエビデンスは限られており、心臓発作および脳卒中のリスクへの影響に関するエビデンスはありませんでした。医薬品規制当局が製造業者に追加の試験を要請する一方で、Avandiaは世界中で広く積極的に処方されまし
た。そのうちに有害な心血管作用の報告が現れ、しかも着実に増加していることがわかりました。2004年までには、懸念を深めた世界保健機関（WHO）までもがこれらの合併症のエビデンスを再度検証するように製造業者に要請しました。再検証により、リスクが増加することが確認されました。

医薬品規制当局がエビデンスを実際に確認し対処したときには、さらに6年が過ぎていました。2010年9月、米国食品医薬品局（FDA）は、2型糖尿病を他の薬剤で抑制できなかった患者に対してのみ、Avandiaの使用を認めると発表しました。同月、欧州医薬品庁も、2カ月以内にAvandiaを市場から引き上げることを勧告しました。米国、欧州の医薬品規制当局ともに、心臓発作および脳卒中のリスク増加を決定理由としました。一方で、独立的研究者グループも、「助言や治療を求める大勢の患者を対象に薬を使いはじめめる前に、医薬品規制当局や医師は確固とした証拠を求める必要がある」という見解を述べました。

心臓機械弁

予期せぬ悪影響を治療に及ぼすことがあるのは、治療薬だけとは限りません。薬を使わない治療でも重大なリスクを引き起こす可能性があります。心臓機械弁は、今や深刻な心臓弁膜症患者の標準的治療法であり、長年にわたり多くの設計改善が行われてきました。しかし、あるタイプの心臓機械弁では、設計改善の試みが、悲惨な結果をもたらしました。1970年代初頭から、Björk-Shiley心臓弁として知られている装置が導入されましたが、初期のモデルでは、しばしば血栓症（血が固まって塊を作る状態）が生じて機能が損なわれました。この欠点を克服しようと、1970年代後半に血栓の可能性を減らすための設計変更が行われました。

新たな装置は、2本の金属支柱によりディスクが固定されたもので、この新タイプの心臓弁が何千と世界中で移植されました。残念なことに、心臓弁の構造には、支柱の1本が破損しやすいという深刻な欠陥がありました。これは支柱破損として知られ、最悪でしばしば致命的な心臓弁の誤動作を引き起こしました。

支柱の破損は、この装置の市販前試験中に問題として特定されていました。しかしそれは溶接不良に起因するとされ、その原因は完全には調査されませんでした。それでもかかわらず、米国食品医薬品局（FDA）はその説明と、たとえ支柱破損のリスクがあったとしても、新たな心臓機械弁はそれを埋め合わせられる以上に血栓症のリスクを下げるという製造業者の説得を受け入れたのです。悲惨な早逝がのエビデンスが次々と明らかになり、最終的にFDAは1986年、この心臓弁を市場から排除しました。それら以前に、何百人の患者が不必要に亡くなりました。市販後の患者モニタリングと包括的な患者登録を含め、医療機器の規制制度は改善されてきましたが、新たな機器導入時には、今でも、より高い透明性を求めていく必要があります。
うますぎる話

ハーセプチン（Herceptin）

欠点を過少評価しながら、新しい治療法の利点をアピールするのは営利企業だけではありません。これと同様に専門家による誇大宣伝と熱狂的なメディア報道も、潜在的な欠点を無視しながら利点を大きく取り上げます。こうした欠点には有害な副作用だけでなく、ハーセプチンという市販名で知られている乳がん治療薬トラスツズマブをめぐる出来事が示すように、診断の難しさが含まれる可能性もあります（第3章も参照）。

2006年初頭に、製薬業界とメディア報道に後押しされ、患者と専門家グループが強い要求をしたことで、英国国民保健サービスは早期乳がん患者を対象としたハーセプチンの採用に踏み切りました。「患者による激しい要求」が勝利―ハーセプチンは奇跡の薬として紹介されました（第11章を参照）。

しかし、当時、ハーセプチンは転移性の（広範囲に広がった）乳がんの治療薬としてのみ認可され、早期乳がんに対する検証は不十分でした。実際、製造業者は、HER2として知られるタンパク質が陽性であったごく一部の患者に限定して、早期乳がん治療向けの認可を申請したばかりでした。この遺伝子プロファイルを持つ女性は、5人に1人の割合でしかありません。患者がHER2陽性であるかどうかを正確に評価することの難しさやその費用、また間違って陽性と診断されて治療が行われる可能性（偽陽性）については、熱狂的に効果に注目して批判の目をもたないメディアはめったに取り上げません。また、5人の乳がん患者のうち少なくとも4人はHER2陽性ではないことも、強調されていません9,10,11,12。

公正にエビデンスを審査し勧告する役目を持つ英国国立医療技術評価機構（NICE）が、HER2陽性早期乳がんの女性の治療法としてハーセプチンを推奨したのは、その年の後半でした。その時さえも、重要な警告付とでした。ハーセプチンが心臓機能に悪影響を及ぼす可能性を示すエビデンスが多数あったため、NICEは医師に対し、薬を処方する前に心機能を評価すること、また、狭心症から不整脈までさまざまな心疾患を持つ女性には処方しないことを推奨しました。NICEは、重篤なものを含む副作用に関する短期的データがあるため、注意が必要と判断したのです。有益性および有害性の長期的転帰は、出現するまでに時間がかかります13。
大混乱に巻き込まれる

2006年、医学教育を受けていたある英国の患者が、ハーセプチンの大混乱に巻き込まれた。彼女は前年にHER2陽性乳がんと診断されていた。

「自分が診断を受ける前は、今の乳がん治療に関する知識がほとんどなかったため、多くの患者と同様に、ネットの情報を利用した。Breast Cancer Careのウェブサイトでは、ハーセプチンをHER2陽性のすべての女性が利用できるよう求める署名運動をしていた。ウェブサイトやメディアの提供しているデータをみて、どこまでも再発で使うことになる薬剤ならば、このような効果的な薬剤の使用を否定するのはおかしいと単純に思い、署名運動に参加した。（中略）私は、この薬剤を使用できなければ、生き延びるチャンスはほとんどないとまで思っていたのである。また、医師であり、『がんの被害者』でもある私の話を聞きたいと、ハーセプチン運動を支持していた新聞社のSun紙からも連絡があった。

化学療法の終了時に、私は腫瘍専門医とハーセプチン治療について話し合いた。医師は、研究では明らかになっていたのに、ウェブサイトやメディアがほとんど取り上げなかった、長期間の心臓への影響に対して懸念を述べた。特にこの薬剤が、乳がん以外の病気がない健康な女性に使用されていること考えると、なおさら心配だと言った。また、広く宣伝され、私の心に染みついていた『50%の利益』を慎重に分析すると、実際は私にとって『4～5%の利益』でしかなく、心臓に悪影響を与えるリスクを加味すると、利益はないかも同然だったのだ。そのため私はハーセプチンを使わないことを選んだ。乳がんが再発したとしても、その選択に満足している。

この話は、医学的な教育を受け、ふだんは論理的な女性でも、生命を脅かしかねない病気の診断を受けたときには動揺してしまうことを示している。（中略）初期の乳がんにおけるハーセプチンの使用を取り巻く多くの情報は、メディアと医薬業界によって人為的につくられた誇大宣伝であり、そこに私の例のような個人が加わるものであった」。

ハーセプチンの使用を求める圧力は他の国でもみられました。例えば、ニュージーランドでは、患者支援団体、報道機関とメディア、製薬会社、政治家など、あらゆる機関や組織が、乳がん患者にハーセプチンを処方できるようにすることを要求していました。

英国のNICEと同じような機能を果たすニュージーランドの医薬管理機関（PHARMAC）は、早期乳がんにおけるハーセプチンの使用に関するエビデンスを、同様にレビューしました。2007年6月、そのレビューに基づきPHARMACは、早期乳がん患者は他の抗がん剤
の前後に投与のではなく、ハーセプチンを同時に 9 週間投与する方法が適切であると判断しました。この 9 週間のコースは、当時、世界中で試行されている 3 つのレジメンの 1 つでした。PHARMAC はまた、ハーセプチンの理想的な治療期間を見極めるための国際的な研究に資金を提供することを決定しました。しかし、2008 年 11 月、選挙で誕生した新政府は、PHARMAC のエビデンスに基づく決定を無視し、ハーセプチンを 12 カ月間投与する治療方針への資金提供を発表しました 14。

ハーセプチンについては数多くの不確実性が残っています。例えば、いつ薬を処方するか、どのくらいの期間処方するか、患者によっては長期的な有効性が有益性を上回る場合があるのではないか、ハーセプチンが乳がんの進行や再発を遅らせることができるかなどの疑問が残ります。ハーセプチンをアントラサイクリンやシクロホスファミドなど、他の乳がん治療薬と組み合わせて投与すると、100 人中約 4 人から 100 人中約 27 人の患者で、心臓の有害作用のリスクが高まる可能性があるという懸念が浮上しています 15。

キーポイント

- 新しい治療法の検証は必要である。既存の治療法よりも優位性がある可能性と同様に、悪影響をもたらす可能性もある。
- バイアス（偏り）があって公正さを欠く検証は、患者の苦悩や死につながる可能性がある。
- その治療が認可されていることは安全であることを保証することではない。
- 副作用が現れるまでは多くの場合、時間がかかる。
- 治療の有益な効果はしばしば誇張され、有害な効果は軽視される。
第2章 期待される効果が達成されていない

いくつかの治療法は、それらが、良い結果よりも害を及ぼしていることが明らかになるまでに、長期間にわたって使用されています。期待される効果が達成されていない可能性もあります。この章では、これについてどのように考えるか説明します。

新生児の就寝時の体位についての推奨

薬だけが害を及ぼすとは思わないでください。アドバイスでも致死的な事態を招くことがあります。多くの人が、米国の育児専門家 Benjamin Spock 博士の名を聞いたことがあります。Benjamin Spock 博士のベストセラー「Baby and Child Care」は、数十年にわたって、特に米国と英国では親と専門家にとっての必読書となりました。しかし、著書にあった善意のアドバイスが深刻な事態を引き起こしました。1956年版から1970年代の後半までの著作で同氏は、反論の余地がないように見える論理を権威的な立場から次のように主張したのです。「新生児の仰向け寝には2つの欠点がある。新生児が嘔吐した場合、その嘔吐物で窒息する可能性がある。また、新生児は頭を同じ側に傾ける傾向がある。（中略）これは頭の片側を扁平にする可能性もある。（中略）新生児は最初からうつ伏せ寝に慣れさせることが望ましいと、私は思う」。

新生児の睡眠姿勢に関するアドバイスは時代とともに変化する

スポック博士の書

(1946年版) により
仰向け寝が推奨される

スポック博士の書

(1956年版) をきっかけに、
推奨がうつ伏せ寝に変更

最初の試験にて
危険性が示唆される

2度目の試験にて
危険性が示唆される

系統的レビューの発表

その他3つの試験が
行われ、うち2つの試験で
危険性が示唆される

米国にて「Back to sleep」キャンペーン

英国
赤ちゃんをうつ伏せ寝にすることは、病院での標準的な習慣になり、数百万の親たちも家で忠実に実践した。しかし、厳密に評価されたことがないこの習慣によって、数万もの回避可能な乳幼児突然死症候群（cot death）1をもたらしたことが現在では知られています。不運な結果を招いた推奨が、乳幼児突然死症候群のすべての要因だったわけではありませんが、うつ伏せ寝の習慣を中止し、乳児を仰向けに寝かせるよう促したことで、こうした死亡は劇的に減少しました。うつ伏せ寝における有害な影響についての明確な証拠が明らかになった1980年代には、医師とメディアがその危険に警鐘を鳴らし、乳幼児突然死症候群の死亡数が劇的に減り始めました。不運を招いたSpock博士のアドバイスの悪影響を完全に排除するため、その後も「仰向け寝に戻す（back to sleep）」キャンペーンが実施されました。

心臓発作後の患者の異常な心臓不整脈を補正する薬

Spock博士のアドバイスは論理的に見えましたが、未検証の理論に基づくものでした。このような危険が生じる別の例をあげることも容易です。心臓発作を起こした後に、心臓のリズム異常である不整脈を発症することがあります。不整脈を発症した人は、発症していない人よりも死亡リスクが高くなります。不整脈を抑制する薬が存在するので、これらの薬が心臓発作後の死亡を減少させると推測するのは理にかなうように思えます。しかし実際にには、この薬は全く逆の効果を持っていたのです。これらの薬に対する臨床試験は行われていましたが、心臓のリズム異常が減少したかどうかだけを検証していました。1983年に臨床試験で蓄積されたエビデンスが最初に系統的にレビュー（されたとき、これらの薬が死亡率を減少させるというエビデンスはありませんでした2）

しかし、この薬はその後も約10年間使用され続け、死亡も発生し続けました。1980年代後半のピーク時には、米国だけで毎年何万人もの早期死亡を引き起こしたと推定されていました。ベトナム戦争中の死亡者総数よりも多い数の米国人が、毎年、死亡したのです3。後になり、商業上の理由から、複数の試験でこの薬が致命的であったことを示唆する結果が出ていたにも関わらず、一度も報告されなかったことが明らかになりました（第8章 p.79を参照）4。

ジエチルスチルベストロール（DIETHYLSTILBOESTROL）

流産や死産の経験を持つ妊婦に対して、ジエチルスチルベストロール（DES）と呼ばれる合成（非天然）エストロゲンが有益かどうかについて、かつては医師らに確信がありました。DESを処方する医師もいれば、処方しない医師もいました。DESは、流産や死産を引き起こすと思われる胎盤の機能不全を改善すると考えられており、1950年代初頭に普及しました。DES治療後に、流産や死産の経験を持つ女性も無事に出産したという事例報告により、DES利用者は自信を持ちました。
例えば、ある英国の産科医は、2回の死産の経験がある女性に対し、妊娠初期から DES を処方しました。その妊娠は、無事新生児の出産につながりました。女性の「自然な」出産能力が向上したと推測した産科医が、その妊娠が4回目目で胎盤機能不全のために胎児は子宮の中で亡くなってしまいました。そのため、妊娠5、6回目の妊娠では、産科医も女性も確信をもって再び DES を使用し、その妊娠は無事出産につながりました。産科医と女性は、DES は有用な薬であると結論づけました。残念なことに、この観察に基づいた結論は、公正な検証では有効性を認められませんでした。妊娠がケアを受けたのと同期間に、公正な研究が実施されて報告が出ていたのですが、DES が有益であるとするエピデンスはありませんでした。公正な検証から、DES が死産防止に役立つというエピデンスは認められませんでしたが、DES の話はそこで終わりませんでした。20年後、まれな膣がんに罹患した若い女性の母親によって、有害な副作用の証拠が出現し始めました。母親は妊娠中に DES を処方されており、娘のがんは DES によって引き起こされた可能性があることを示唆していました。この観察は正しく、また最も重要なことは、それが正しいと証明されたことです。それ以来、発生前に DES に曝露した男女問わず対象者に関して、多くの研究がさまざまな DES の深刻な副作用を明らかにしてきました。これらの副作用には、まれながんの頻度増加だけでなく、生殖器系の他の異常も含まれていました。妊娠時に DES は使用してはならないと公式に発表されるまでに、数百万人がこの薬に曝露されていました。医師が 1950年代に入手可能な DES に関する最も信頼できる研究のエピデンスを活用していたならば、処方する医師は少なかったと考えられます。なぜなら、DES が最初に処方された胎盤機能不全の改善に対して、実際に効果があるという証明は存在しなかったからです。残念なことに、この有益性に関するエピデンスの欠如が、広く見過ごされてしまったのです。

ホルモン補充療法（HRT）

ホルモン補充療法（HRT）が閉経後の女性では、よく起きる悩ましい顔の潮紅を軽減するのに非常に効果的であり、骨がもろくなる骨粗鬆症の予防に効果があるとするエピデンスがいくつかあります。後日、心臓発作および脳卒中の予防を含む、より多くの有益な効果についても、報告が出てきました。医師のアドバイスを受けた何百万もの女性が、これらの報告を受け、ホルモン療法を長期的に使いはじめました。しかし、これらの報告の根拠は非常に疑わしいものでした。
混乱するのも無理はない

下記は、2004年1月、子宮摘出患者が医学雑誌「The Lancet」あてに書いた手紙である。「1986年に、私は子宮筋腫のために子宮摘出術を受けた。その際、卵巣も除され、子宮内膜症も認めた。私は当時まだ45歳で、すぐに閉経が始まってしまうであろうことから、ホルモン補充療法（HRT）をうけることになった。最初の1年はコンジュゲートエストログン（プレマリン）を服用したが、1988年から2001年までは、私の手術を担当した医師から私費治療として6カ月ごとの埋め込み式エストロゲンの投与を受けていた。私は、常々、この治療に多少の疑念を抱いていた。なぜならエストロゲンを埋め込んだ後、私は事実をコントロールすることができないと感じ、数年後には頭痛がちょっとや起きたからである。それ以外は、体の具合はとてもよかった。

私の外科医は、HRTには非常に多くの利点があり、それが私に役立っていると言う、私もそう思った。時間が経つにつれて、HRTは当初使われていた美容目的よりも、もっと多くの効能があると報告された。今やエストロゲンは、心臓、骨粗しょう症、および脳卒中の部分予防に良いと言われている。私が訪問するたびに、私の外科医はHRTを服用することの利点について、さらに多くのエビデンスを持っているようにみえた。

その外科医が2001年に引退したため、私は国民保健サービスの医師のもとへ行った。そこで私は衝撃を受けた！その医師は、私の外科医とは正反対のことを言ったのである。HRTはやめた方が良い、HRTを継続することで心臓病、脳卒中、乳がんのリスクが高まり、頭痛の原因ともなるというのだ。私はもう一度だけ投与を受け、その後は短期間、プレマリンの投与を受けたが、それ以来、約8カ月間HRTを使用していない。私の医師は、投与を続けるか、やめるかは私の判断だと言った。私はとても混乱していた。

HRTとその素晴らしい利点が、短期間でなぜ逆転するのか私には理解できない。自分のような素人がどうやって明確な決定を下すことができるのか？これまでのところ、悪影響は受けていないものの、私はHRTを継続した方がよかったのではないかと何時間も思いあぐねた。この問題について完全に混乱してしまったし、他の女性も同じように感じていると確信している。

心臓発作だけをみても、20年以上にわたりHRTがこの重大な疾患のリスクを軽減すると言われえてきました。

実際には、このアドバイスは、偏りがある（公正さを欠く）研究（第1章および第6章を参照）の結果に基づいたものでした。そして1997年には、そのアドバイスが間違っている可能性があるとの警告がありました。フィンランドと英国の研究者が、適切に実施された研究の結果について系統的レビューを行ったのです。彼らは、HRTが心臓病を減らすべきこと
ろか、実際には増加させる可能性を発見しました。この結論を却下した有力な解説者もい
ましたが、この結論は2つの大規模な実証試験によって確認されました。導入時にHRTの
効果が適切に評価されていれば、女性たちは誤った情報を受取らず、その多くが早期に
死亡することもなかったでしょう。さらに悪いことに、今ではHRTは脳卒中のリスクを高
め、乳がんを発症させることがわかっています。

全体的にみれば、HRTは更年期障害を有する女性にとって価値のある治療法であり続け
ていますが、特に心臓発作や脳卒中を軽減する治療法として奨励されていたこと
は、非常に残念なことです。このような病気に深刻化する可能性は低いとは言え、HRTは
非常に広く行われているため、非常に数多くの女性が影響を受けています。

湿疹治療用の月見草油（EVENING PRIMROSE OIL）

たとえ不適切に評価された治療が死亡例や有害事例につながらなかったとしても、金銭
的な無駄を生む場合があります。湿疹は、子どもも大人も罹患する悩ましい皮膚疾患です。
皮膚の病変は、外見上の問題と強いかゆみが発生します。この病気にはステロイドクリー
ムの使用が役立ちますが、皮膚の薄層化など、これらの治療の副作用に関する懸念があり
ました。1980年代初頭には、天然植物油エキスである月見草油が副作用の少ない代替品と
して現れました。月見草油にはガンマリノレン酸(GLA)と呼ばれる必須脂肪酸が含まれ
ており、それが湿疹に月見草油を使用する妥当な理由とされていました。そして、例えば、
GLAは湿疹のある患者の体内で変換される（代謝される）という意見もありました。したがって、理論的には、GLAサプリメントも役立つはずです。また、スターフラワーオイ
ルとしても知られているルリヂサ油には、さらに多量のGLAが含まれており、このルリヂ
サ油も湿疹治療に推奨されていました。
GLA は安全だと信じられていたが、有効だったのでしょうか？それを解明するためには数多くの研究が行われましたが、結果はこれと反するものでした。また発表されたエビデンスは、サプリメントを製造する企業が資金提供する研究によって大きな影響を受けていました。1995 年、英国保健省は、月見草油の製造業者とは関係のない研究者に、合計 20 件の公開および非公開の研究についてレビューを要請しました。有益性を示すエビデンスは見出されませんでした。対象薬の製造者が異議を唱えたため、保健省は報告書を公表しませんでした。しかし 5 年後、同じ研究者が月見草油とルリヂサ油について別の系統的レビューを行い、その時は報告を公表しました。結果、最も大規模で包括的な研究でも、これらの治療法が効いたと証明するエビデンスは認められませんでした 12。

調べなかったことが一点あります。おそらく GLA は極めて高用量でしか作用しないという主張です。しかし 2003 年には、注意深く実施された公正な検証により、この主張も否定されました 13。皮膚病に、これらの結果が公表される頃までは、英国医薬品規制庁（MCA、その後、英国医薬品庁（MHRA）に改称）が、薬を頒布するというエビデンスがないとして、ついに 2002 年 10 月に、2 つの主な月見草油製剤の製品認可を撤回しました。しかし、それにもかかわらず、月見草油の安全性については何の懸念も表明されていなかったため、それはさまざまな症状に使える「栄養補助食品」として店頭で広く販売されています。月見草油の湿疹への効能は、「湿疹症状の緩和が期待できます」、「役立つ可能性があるま
す」、「湿疹などの症状に対して抗炎症剤としての作用が期待できる薬効成分が含まれて
います」など、あいまいな表現で宣伝されています。

キーポイント

- 学説や専門家の意見は、安全で効果的な治療法への信頼できる指針ではない。
- 治療法が「確立されている」という理由だけでは、有害性よりも有益性が上回るとは
 限らない。
- たとえ患者が不適切に検証された治療で副作用がなかったとしても、それを利用する
 ことで個人および社会の資源を無駄にする可能性がある。
第3章 多ければ良いとは限らない

良い治療ならば、それを沢山やればもっと良いに違いない。これはよくある誤解です。正しくないとでなく、実際には有害になることもあります。利益が多く副作用の少ない「適切な」用量を見つけることは、すべての治療に共通の課題です。用量を増やしていくと、有益な効果はあるところで頭打ちになりますが、一般的に有害性は増加し続けます。つまり「より多く」は、実際の利益を減らしてしまうか、全体として害を引き起こしてしまう可能性があるのです。

利尿薬が良い例でしょう。低用量なら血圧を下げ、副作用はほとんどありません。しかし、高用量だとさらに血圧が下がることがなく、むしろ頻尿、インポテンス、血糖値の上昇など有害な作用を引き起こします。同様に低用量アスピリン（1日あたり摂取量が標準錠剤の1/4〜1/2）は、脳卒中の予防に役立ち、副作用はほとんどありません。しかし、日に何度かアスピリン錠剤を摂取することで頭痛が和らぐ可能性はありますが、脳卒中を予防する効果はなく、逆に胃潰瘍のリスクを高めてしまいます。

この「適正な投与量」の原則は、薬物療法に限らず手術を含む他の多くの治療法にも当てはまります。

乳がんの集中治療

よくニュースにもなる乳がんの治療は、より集中的な治療の方が有益だと思い込む危険性について、特に貴重な教訓を与えています。

医師の医療の根拠とは

「私たち（医師）がそのような行動をとったのは、以下のような理由からだ。他の医師がそうしているし、違うことはしたくない。教師、同僚、研修医にそう教えられた。教師、管理者、規制当局、ガイドライン開発者によってそうするように強制されたり、そうしなければならないと思い込んでしまった。患者が望むのでそうするべきと思った。金銭的利益（不要な検査（特に手続き指向の医師による）と不要な診療）のため。[法制度、監査]が心配で（身を守る）。自然がその過程をたどるためにある程度の時間が必要である。最後に、そして最も一般的な理由は、何かをしなければならず（正当化）、常識を当てはめることができなかったので、そういう行動をとるのだ」。

Parmar MS。We do things because (rapid response). BMJ.Posted 1 March 2004 at www.bmj.com。

20世紀から21世紀にかけて、乳がんの女性は、非常に厳しく苦しい治療に耐えていました。これらの外科的および内科的治療法のいくつかは、乳がん治療に実際に必要な処置の
域をはるかに超えたものでした。しかし、一部の患者や医師の間では、そうした治療法が圧倒的に人気でした。患者はより積極的な治療、あるいは有害作用を伴う治療であればあるほど、乳がんを「征服」できる可能性が高いと確信していたのです。乳がん治療に対する従来の態度に異議を唱え長年準備してきた医者と患者が、この誤った信念を変え始めた。「治療は多い方が良い」という神話を捨てさせるため、彼らは信頼できるエビデンスを用意するのに苦労しましたが、同僚の軽べつや著名な医療関係者からの抵抗に悩まされました。

今でも、治療は多い方が良いはずだという考えと相まって恐怖感が、治療選択の根拠となっています。その治療法の有益性が、より簡単なアプローチを上回るというエビデンスされない場合や、治療で死亡する可能性を含め、有害性が高いことがわかっている場合でもそうです。例えば、この考え方は、一部の患者と医師に「従来型」の大幅な切除手術を選択するよう促します。またより簡単な治療で十分に効果がある場合でも、重篤な心臓疾患を引き起こす可能性があり、不快で苦痛な副作用で知られているハーセプチンの高用量化学療法を選択する人もいます（第1章を参照）。どうすれば良いのでしょうか。

過激な治療が常にベストとは限らない

「がん治療に携わる者は、より過激な治療が良い結果を生むと考えがちである。患者を不必要的リスク、過激な治療のために不要にもたらされる初期、晚期の副作用から守るためには、過激な治療と、それほど過激でない治療を比較したランダム化試験が不可欠である。あるかもしれない利益享受をとらないことにした患者は、同時にあるかもしれない危害からも守られるので、この比較試験は倫理的である。そして結果は判明するまで誰にもわからないのだ」。

切除手術

20世紀半ばまで、外科手術は乳がんの主な治療法でした。これは、がんがゆっくりと秩序ある方法で進行し、最初は胸部の腫瘍から局所的なリンパ節、例えば腋の下などに広がるという考えに基づいていました。その結果、腫瘍の切除手術がより根治的で迅速なものであるほど、がんの拡散をやめる機会が高まると考えられました。治療は広範な「局所」手術、すなわち乳房または乳房付近の手術でした。それは局所と呼ばれたものの、根治的な乳房切除術であり、胸部筋肉の大部分と広範なリンパ節組織を胸部だけでなく腋の下からも取り除く手術でした。
古典的（ハルステッド）胸筋合併乳房切除

William Halsted 氏によって 19 世紀後半に考案された根治的（胸筋合併乳房切除）手術は、20 世紀の第 3 四半期まで乳がん治療で最も一般的に行われた手術だった。外科医は、乳房を超えて切除するだけでなく、胸壁を覆う大胸筋も切除した。外科医が腋窩（腋窩）からリンパ節および周囲の脂肪を切除できるよう、小胸筋も取り除かれた。

拡大乳房切除

「多い方が良い」という信念により、より積極的な外科医は鎖骨上のリンパ節と胸骨下の内胸のリンパ節を取り除く、さらに広範な手術を行うようになった。内胸のリンパ節に達するため、複数の肋骨を取り除き、胸骨を骨ノミで割った。それにとどまらず、腫瘍の広がりを「ある」と考えられていたホルモンの生産を抑制しようと、腫瘍のある側の腕を外し、身体のさまざまな腺（副腎、下垂体、卵巣）を切除する外科医もいた。女性がそのような手術に耐えても、大幅に切除された胸郭は、衣類で隠すことも困難だった。手術が左側だった場合、心臓を覆うために残ったのは、薄い層の皮膚だけだった。

このような状態である、このような切除手術の増加が乳がんによる死亡率によい影響を与えているような、と指摘した思慮深い乳がんの専門家もいました。そして、乳がんは乳房から近くのリンパ節にまで広がるのではなく、実際には最初から全身性の病気だという別の理論を提起しました。言い換えれば、乳房のしこりが発見された時点で、がん細胞が体内的他の場所にすでに存在しているはずであると推論しました（下記を参照）。そこですれば、腫瘍およびその周辺組織について適切な範囲で切除し、局所放射線治療を加えた治療パターンが、可能にとって優しい治療であり、根治的手術と同じくらい効果的であると主張しました。この新たな乳がん転移の理論に基づいて「全身療法」の導入、つまり体内の他の場所のがん細胞の発生を考慮した治療法が生まれました。

このような考え方に基づいて、医師らは、腫瘍および周囲の正常組織の辺縁部に限定した乳腺腫瘤摘出術（乳房温存術）を提唱しました。乳腺腫瘤摘出術の後に放射線療法が行われ、一部の女性では化学療法が行われました。しかし、乳腺腫瘤摘出術の支持者は、この新しいアプローチを根治手術と比較することへの大きな抵抗に遭いました。医師はそれぞれ、どちらか一方のアプローチを強く信じ、患者もまた自分の信じる治療を切望しました。その結果、提案された新しい治療法の有益性と有害性について、既存の治療との比較をした重要なエビデンスの作成は遅れました。

様々な困難がありましたが、利益に対する疑いをもたながら治療を続けることを望まない外科医と、切除手術を受けたくないと声をあげた女性の両方によって、最終的に強引な手術に異義が唱えられるようになりました。
1950年代半ば、米国の外科医George Crile医師は、「多い方が良い」とするアプローチへの懸念を広く一般に訴えました。医師に批判的に思考させる最も効果的な手段として、人気雑誌のライフ誌の記事で訴えました。その後、米国の外科医Bernard Fisher氏は、他分野の専門医らとともに、がんを生物学的に研究する一連の厳密な実験を考案しました。その結果、がん細胞は、たとえ原発がんが発見される前であっても、血流を介して広く移動することができる事が示されまし。これは、がんがすでに体のどこかに存在しているならば、積極的な手術はほとんど意味がないという結果です。Crile医師が臨床的判断からより局所的な療法を主張したのに対し、Fisher医師と人数が増えたその研究者グループは、協力してより正式で厳密なアプローチをとりました。最も偏りのない（公正な）方法として知られるランダム化試験（第6章を参照）によって、根治的手術の価値を証明するか、または反証しようと組んだのです。彼らは、そのような研究を行うことで、医療界と一般市民が合意できる結論を得るだろうと論じました。1971年、Fisher医師は、外科医はそうした試験を行うことで理論を検証するという倫理的かつ道徳的な責任を負っていると言いました。そしてその言葉通り、Fisher医師による試験の20年間の追跡調査で早期死亡のリスクを評価したところ、乳房温存術に続き放射線治療を行う治療法に対して、根治的乳房切除術の方が優れている点は示されませんでした。

ランダム割り付け - 簡単な説明

「ランダム化によって、偏りを最小限に抑え、各治療群の患者がすべての既知および未知の要因において可能な限り類似していることを保証できる。これにより、各治療群の転帰に見出されるいかなる差異も、治療効果の差異によるもので、それぞれの治療を受けていた患者間の差異によるものではないことが保証される。
ランダム化は、臨床医が意識的または無意識のうちに特定のタイプの患者を1つの治療に割り振り、別の治療を別のタイプに割り振る機会を排除し、また特定の種類の患者が1つの治療を選択し、別の種類の患者が他の治療を選択する機会も排除する」。

乳がん手術における「多い方が良い」とするアプローチへの挑戦

他の国の研究者もランダム化試験（第6章参照）により、乳房温存療法と根治的乳房切除術を比較しました。例えば、1960年代初めの英国の Hedley Atkins 氏ら、その後イタリアの Veronesi 氏らの研究です。総体的に Fisher 医師の結果が確認され、20年後の追跡調査も含めて、根治的乳房切除術がより良い生存をもたらすというエビデンスは認められませんでした。スウェーデン、イタリア、ならびに英国と米国における他のランダム化試験では、手術後に放射線療法を実施した場合と手術単独治療との比較、短期と長期の化学療法の比較など、多くの治療法間で比較を行いました。全体として、これらの早期試験および詳細な実験研究の結果は、乳がんが確かに全身性疾患であり、乳房のしこりが発見される前に血液を介してがん細胞が広がるという理論を支持していました。根治的な手術が有益性よりも多くの有害性を持つというエビデンスが増える中、世界中でより多くの医師が納得するようになりました。そして、20世紀の最後の10年間で、患者や一般市民の態度も変わり始めました。米国やその他の地域において、Rose Kushner 氏（第11章参照）などの患者活動家の活動に先駆け、知識を得た患者グループが世界中から集まり、「多い方が良い」という考え方が手術や、しばしばそうした考えに従う医療パトーナリズム（医療父権主義）に異議を唱えました。

患者と医療従事者に広まったこの活動は、過去の外科手術における過剰な切除に対して効果的に問題を提起しました。しかし、信じられないことに、不必要な乳房切除手術は依然として報告されており、例えば 2003 年には、日本で150件以上の根治的乳房手術が行われていました。

1985年までは、乳がん治療のあらゆる面から膨大な件数の試験が実施され、その試験結果を最新情報に反映させることが非常に困難でした。この問題に取り組むため、オックスフォード大学の Richard Peto 氏は同僚とともに、多くの研究に参加したすべての女性に関する全情報をもとに、初めて一連の系統的レビュー（第8章参照）を実施し、すべての試験所
見をまとめました。乳がん治療の系統的レビューは、今では定期的に更新され、公開されています。

骨髄移植

しかし強引な切除手術は終わったものの、「多い方が良い」という考え方が消えたわけではありませんでした。20世紀の最後の20年間に、高用量の化学療法とそれに続く「幹細胞レスキュー」と呼ばれる骨髄移植を含む新しい治療アプローチが導入されました。1999年のNew York Times紙では、このアプローチの背景をこう説明しています。

「医師は患者の骨髄や赤血球の一部を抜き取り、骨髄を破壊する莫大な量の毒性薬物を投与します。高用量の薬物ががんを排除した後、保存していた骨髄を体に戻し、患者が感染症で死なないように、それが素早く増殖するのを目標にします。骨髄提供を利用したこの方法は、長い間、血液のがんに有効な治療として確立されていました。これは、血液のがんは患者の骨髄にがんが存在しているという理由からでした。乳がんにこうした治療を使うとすれば完全に異なる、そしてまだ検証されていない理論によります」。

米国では、100人の患者のうち5人が治療で死亡したにもかかわらず、命懸けで何千人もの女性達が、医者や病院にこの苦しい治療を求めました。患者自身の自己負担分も含めて、何千ドルもの費用が費やされました。最終的に一部の患者は、その治療の有用性を示すエビデンスが欠如していたにもかかわらず、社会的圧力を受けて医療保険会社から払い戻しを受けました。多くの病院や診療所もこの治療で収益がありました。1998年、ある病院経営法人は、主に骨髄移植を行うがんセンターから1億2,800万ドルの収入を得ました。米国の医師にとって利益のあがる収入源であり、名声も得られ、多くの論文を書くことのできる分野でした。患者からの根強い需要が市場を活性化させました。治療を提供する米国の民間病院間の競争は激しく、治療費値下げの宣伝も見られました。1990年代には、臨床試験のために患者を募集しようとしている米国の大学病院でさえこの治療法を提供していました。これらのプログラムは効果に疑問があっても、がん治療にとって「利益をあげるドル箱（cash cow）」となっていました。

このような効果が証明されていない治療法に無制限にアクセスすることは、別の重大な欠点がありました。これらの治療法と、標準的な治療法を比較する臨床試験に参加する患者が十分に確保できなかったのです。その結果、信頼性の高い回答を得るには予想以上に時間がかかりました。
公正なエビデンスのための闘争

研究者らは、2つの研究で約1,000人の女性を登録するのに約3年を要すると予想した。しかし実際には7年かった。（中略）これは決して簡単なことではない。しかし、対照群の患者を含むランダム化試験として知られる研究の外で移植を受けるなら、医師が移植で命を救えますと熱意を持って言うかもしれない。患者は真実を知る権利を持っているが、希望を奪う医師のところには行きたがらない。

このような問題によって公正なエビデンスを得ることが困難だったにもかかわらず、いくつかの臨床試験が実施され、他のエビデンスも批判的に見直されました。そして2004年までに、従来の化学療法と、高用量化学療法の後に骨髄移植を実施した場合と比較し、蓄積されたその結果の系統的レビューが行われました。一般的な乳がん治療としては、高用量化学療法と骨髄移植が有用であるという確かなエビデンスはありませんでした10,11。

あえてより少ない治療を考える

したがって、多い方が常に良いとは限りません。このメッセージは今もって重要です。現在、転移性乳がんの女性の間には、ハーセプチン（上記および第1章を参照）などの治療にかなりの期待があります。しかしハーセプチンは、これらの患者に、重篤な副作用や治療自体による死亡の可能性をもたらす一方で、わずか数日ないし数週間という生存期間延長の小さな機会を提供する一方です12,13。

この過剰治療の傾向は、乳がん治療の全く別の領域でも明らかにされています。例えば、乳がんスクリーニング（第4章を参照）によって検出された非浸潤性乳管がん（DCIS）のような前がん状態の女性において、過剰でしばしば不必要な治療が行われています。DCISは未治療のまま放置しても、一生涯、問題を起こすことはない可能性が高いのです。一方、一般的な脇下リンパ節を取り除く手術にも、リンパ浮腫などの腕に影響を与える不快な合併症リスクとして、疑義が高まっています。他の治療法に腋窩リンパ節切除を加えても、生存率の改善が見られないからです（第5章を参照）14。

キーポイント

- 集中的な治療は必ずしも有益ではなく、時には利益よりも害を及ぼすことがある。
第4章 早ければ良いとは限らない

冒頭の3つの章では、十分に検証されていない治療がなぜ重大な害をもたらしうるかを説明しました。本章では、病気を早期発見するために、一見健康な人々に対して行う検診に着目します。検診はとても賢明なことに思えます。病気による深刻な影響を避けて、健康を維持するのにそれ以上よい方法があるでしょうか。しかし検診は役に立つ状況がいえどある一方で、害を及ぼすこともあります。本章では、さまざまな疾患を例にあげ、診断は早いほどよいくらいもあるが、必ずしもそうとは限らないのはなぜか、有益性が全くなさかつ不確定な検診が数多くあるのはなぜか、そして、いかにして検診の有益性がしばしば大げさに宣伝され、有害性が軽視または無視されてきたかを説明します。

健康な人への検診は決して安易に行うべきではありません。慎重にならざるを得ない重要なマイナス面が必ずあるからです。検診は医学的介入です。それだけでなく、検診を勧めること自体が介入です。検診を受けないことにしたとしても、それが「正しい」判断であるかどうか、ずっと不安が残る人もいるでしょう。それが人間というもののです。そもそも検診を勧められていなければ、状況は全く異なります。

確認や治療を目的として検診を健康な人々に勧めるのは、次の点について確証がある場合に限るべきです。 (a) 検診による有益性よりも有益性の方が大きいと見込まれ、手頃な費用で受けられること、(b) 検診が、高品質かつ良好に運営される制度の一環として実施されること（下記を参照）の2点です1。

検診は、検査だけにとどまるものではありません。検診を受けるよう勧められた人には、受けるかどうか判断できるように偏りのない十分な関連情報が必要です。つまり、自分が巻き込まれていく事態について知る必要があります（下記を参照）2。
検診に対する考え方の1つは、次のようなものです。

検診 = 検査 + 効果的な管理戦略

神経芽細胞腫検診からの教訓

神経芽細胞腫（主に小児に生じる、まれながん）検診での経験は、教訓になる点があります。この腫瘍は、身体のさまざまな部位の神経細胞に発生します。この病気にかかった小児の生存率は、腫瘍に侵されている身体の部位、診断時の腫瘍の広がり具合、患児の年齢などの要因によって異なります。診断時1歳から4歳までの患児の5年全生存率は、約55％です。神経芽細胞腫の特徴は、時として治療なしで完全に消失する（自然退縮と呼ばれる現象）数少ないがん種の1つであるということです。

神経芽細胞腫はかつて、次の4つの理由から検診に恰好の疾患だとみなされていました。すなわち、(1) 1歳前に診断された小児は、1歳以降に診断された小児よりも予後が良好であることがわかっている、(2) 疾患が進行している小児は、疾患が早期の小児より状況がかなり悪い、(3) 尿を含んだおむつから尿を吸い取り、尿中の物質を測定するという簡単で安価なスクリーニング検査がある、(4) その検査では、神経芽細胞腫に罹患した小児を10人中9人の確率で検出できる、という理由です。

生後6カ月の乳児を対象とした神経芽細胞腫の集団検診は、日本で1985年に初めて導入されました。当時、臨床試験による偏りのない（公正な）科学的エビデンスは得られていませんでした。全国的検診の開始から3年間で337人の乳児が神経芽細胞腫と診断され、そのうち治療を受けた97％が、1990年に至っても生存していました。しかし、20年後、神経芽細胞腫検診によってこのがんで死亡する小児の数が減少したことを示すエビデンスはありません。どうしてそんなことになるのでしょうか。

日本で検診が導入され、推進される根拠となったエビデンスを詳細に調べたところ、重大な欠陥があることが判明しました。簡単に説明できる欠陥です。専門用語で「罹患期間バイアス（偏り）」と呼ばれるものです。つまり、検診は、時間をかけて発症する疾患（この場合は増殖が遅い腫瘍）の検出で最も効果を発揮します。対照的に、急速に増殖する腫瘍は、検診で検出される可能性は低いのですが、小児では腹部の腫れなどの徴候が現れ、医師の診察を受けることになります。急速に増殖する腫瘍は、増殖が遅い腫瘍より重症度がかなり高くなる可能性があります。増殖が遅い神経芽細胞腫は通常、自然退縮を含めて予後は良好です（図を参照）。

つまり、検診で診断されたこの337例は、いずれにしても、その後の経過が良好であったと思われる症例が大半であり、最悪の転帰をたどる可能性のある乳児は含まれていなかったと考えられます。当然、検診が検出した神経芽細胞腫には自然退縮していったものも含まれていたでしょう。検診をしていたければ、これらの腫瘍が存在したことさえ誰も知
らなかったでしょう。検診を実施したことで過剰診断を受けた乳児は患者となり、その後、治療に伴う不要な害にさらされることになりました。

病気と診断されてからの生存期間

日本での全国検診実施の根拠となった小規模研究の結果は有望には見えたものの、出生日からの生存期間ではなく、神経芽細胞腫の診断日からの生存期間を調査して解析したものです。これは重要な点です。なぜなら、より早く病気と診断されたために患者の生存期間が延びるわけではなく、病気の患者となってからの人生が長くなるにすぎないからです。別の言い方をすれば、「病気の時計」が早く動き出すため、生存期間が長くなったようにみえます。これは、「リードタイム・バイアス（偏り）」と呼ばれる別のバイアスを示す例です。このバイアスは、診断時の年齢ではなく、出生日で結果を解析すれば取り除くことができます。

対照的に、カナダとドイツで合わせて約 300 万人の小児を対象として同検診の臨床試験が実施されました。そこから得られたバイアスのないエビデンスでは、検診による有益性を認めることはできず、逆に明らかな有害性がありました。具体的には、不適正な手術と化学療法があげられ、そのいずれも不要かつ深刻な影響を及ぼす可能性があります。このエビデンスに基づいて、日本では乳児の神経芽細胞腫検診が 2004 年に中止されました。

その頃、初期の日本の研究で有望な結果が出た後、オーストラリアのニューサウスウェールズ州では、1980 年代に神経芽細胞腫検診が計画されていましたが、大勢の乳児は検診を免れました。
早期発見は受ける価値があるものという思い込みは禁物

「神経芽細胞腫検診の例は、検診を病気を早期発見できるので検診を受ける価値があるはずだと、人がいかに簡単に思い込んでしまうかを示している。この2件の研究から、神経芽細胞腫検診は受ける価値がなかっただけでなく、「過剰診断」につながっており、自然退縮したであろう腫瘍も見つけていたはずであると言える。どちらの研究でも、検診実施群の小児は治療に伴う重度の合併症を発症したと報告した。これらの教訓が前立腺がん検診など他の検診プログラムの実施を検討する際に活かされることが望まれる」。

前述の通り、日本での研究結果は、検診を受けた乳児の診断日以降の生存期間の延長を示すものであり、出生日からの生存期間は解析していませんでした。そこで、オーストラリアの専門家が、日本での研究結果について乳児の診断日からではなく、出生日に基づいて再解析したところ、検診を受けた乳児と受けていない乳児とは生存率に何ら差異を認めませんでした。これを根拠として、ニューサウスウェールズ州当局は検診制度を廃止したため、乳児を不要な害から守り、医療関係局は不要な支出を免れることができました。

有益性と有害性のバランスをみる

有益な検診の例は多数あります。おそらく、成人で最も広く実施されているのは、心臓病や脳卒中の危険因子検査で、一般の診療で日常的に行われます。高血圧、高い血中コレステロール値、喫煙がこれらの疾病リスクを高めること、そして、そのような危険因子がある人を特定して指導し、治療すれば心臓発作や脳卒中を予防できることを示す十分なエビデンスがあります。

フェニルケトン尿症検診：明らかに有益

新生児は通常、フェニルケトン尿症（PKU）という遺伝性疾患の検診を受けます。PKUの新生児は、乳、肉、魚、卵など毎日の食品に含まれる物質であるフェニルアラニンを処理することができません。治療を受けないでいると、フェニルアラニンが血液中に蓄積し、深刻で回復不能な脳損傷を引き起こします。PKUの検査では、新生児のかかとから血液を数滴採取し、検査室で分析します。この「かかと穿刺検査」で陽性となり、精密検査で診断が確定した新生児には特別食による治療を行い、正常に成長できるようにします。
腹部大動脈瘤検診：慎重に推進

対象年齢層は全く対照的ですが、腹部大動脈瘤検診も有益と言えます。大動脈は体内で最も太い血管で、心臓から胸部および腹部を通っています。一部の人々では、加齢とともに腹部の大動脈の壁が弱くなり、大動脈が膨らみ始めます。この状態を動脈瘤と言い、症状が出ることはほとんどありませんが、65歳以上の男性に最も多くみられます。大きな動脈瘤は、そのうちに前触れなく破裂して血液が漏れ、しばしば死に至ります。高齢男性における動脈瘤の頻度に関するエビデンスは、検診制度を導入する際の根拠となります。例えば、英国では65歳になった男性を対象として（女性は対象外）、超音波検診が実施されています。超音波スキャンで大きな動脈瘤が見つかれば、専門家による指導や治療（通常、外科手術）を受けられます。小さな動脈瘤が見つかった場合は、さらに画像検査を行い、経過を観察し、大動脈が大きくなっていなければ、再度検診を受ける必要はありません。検診と手術の質が非常に重要です。動脈瘤手術は大手術であり、合併症の発生率が高ければ、手術は有益というより害になる男性が多くなります。

乳がん検診：定着しているが、いまだ議論は分かれる

マンモグラフィ（訳注：乳房の入線事象又は影による画像診断法）による定期的乳房検診は、多くの国々で定着しているため、有益性が有効性を上回るという確かなエビデンスに基づいているはずだと一般には思われているでしょう。米国のある公衆衛生専門家が2010年に次のように述べました。「かつてこれほど入念に研究されたスクリーニング検査はありません。この50年間で、60万人以上の女性が10件のランダム化試験に参加しており、それぞれの試験で約10年間の追跡調査を行っています」。しかし、彼はこう続けます。「この並外れた研究努力を考えると、マンモグラフィによる検診が依然として医学界で最も意見の分かれる問題のままであるというのは皮肉なことです」。

なぜマンモグラフィ検診はこれほど意見が分かれるのでしょうか？根本的な理由は、検診実施者や患者グループから女性たちに対し、受けるのが賢明であると「売り込まれて」きたことです。乳房検診の対象とされる女性に提供される情報では、有益性、限界、そして影響については上手くあしらわれながら、有益性を強調しています。しかしながら、マンモグラフィは、早期診断につながるだけではなく、前立腺がん（下記を参照）と同様に、患者の生涯で症状が現れないようながんの診断にもつながります。また、偽陽性（訳注：本当は陰性なのに陽性の結果が出ること）判定が出ることも避けられないでしょう。

最も信頼性の高いエビデンスは、女性を検診受診群と非受診群にランダムに割り付けた複数の臨床試験の結果を系統的に検証したものですが、興味深い結果が出てています。2,000人の女性が10年間定期的に検診を受けた場合、検診の恩恵を受け、乳がんによる死亡を免れるのは、そのうち1人であるということです。しかしこの一方で、10人の健康な女性が検診で「がん患者」となり、不要な治療を受けることになります。実際にマンモグラフィ
フィが上記の研究に参加した女性で見つけ出した病変は、進行が非常に遅いか、全く進行もせず、真のものには決して至らないと思われるものでした。これらの健康な女性は乳房の一部または全体を切除されることになり、放射線療法、時には化学療法を受けるケースも多いでしょう。

さらに、検診を受ける女性2,000人中200人が偽陽性判定を受ける見込みですが、がんであるかどうかわかるまで、またわかった後にも、心理的な負担は深刻なものになりかねません。マンモグラフィは、乳房自己検診（セルフチェック）に同様に、しばしば女性に推奨されていますが、両方とも利益よりも害をもたらすという結果が示されています。

英国のある公衆衛生専門家は、マンモグラフィで個人が利益を受ける可能性は非常に小さいと指摘しています。彼は次のように述べます。「このことは広く知られていません。その理由の1つは、マンモグラフィ検診実施者にとって、（検診の）受診者数を確保するためにはプラス面を強調する必要があり、曖昧な情報しか提供しなかったことです」。彼は2010年に入手可能なエビデンスを評価し、「マンモグラフィは確かに命を救い、特に高齢の女性で高い効果を発揮しますが、害があることも確かです」とコメントしています。彼が言及する害とは過剰診断と偽陽性です。近年実施された複数の検診研究の結果の全体検証は、いまだ公平な観点で行われていないと彼は批判します。こうした公正な評価が待たれる一方で、女性は相変わらずマンモグラフィ検診を受けるよう勧められています。少なくとも、検診を受けるかどうかを（希望すれば家族や医者と一緒に）自分で決められるように、バイアス（偏り）のない十分な情報を女性に提供する必要があります。

前立腺がん検診：不確かな有益性に伴う明らか有害性

前立腺がんは男性のがんとして世界的に2番目に多く、大きく2つのタイプに分かれます。その1つが、一部の男性にみられる悪性度の高い前立腺がんです。この危険なのがんは急激に広がってしまい、死亡率が高いものです。一方、多くの男性に発症するのは成長が遅いのがんであり、一生の間に健康に危険を生じるほど進行しないものです。検診では、成長が遅いのがんではなく、危険なのがんを（治療できることを期待して）検出できれば理想的ですが、その理由は、いずれのタイプの前立腺がんであっても、治療に伴って失禁や勃起不能など非常に度な副作用が生じる恐れがあるためです。これは、そもそものがんが問題を生じないのであれば、高い代価であると言えます。

前立腺がんの男性のほとんどで、前立腺特異抗原（PSA）と呼ばれる物質の血中濃度が高いです。とはいえ、がんのある男性となります男性を区別できる境界となる値は明らかではありません。また、臨床的に明らかのがんのある男性の5人に1人はPSAが正常値です。さらに、その名称にかかわらず、PSAは全く「特異的」ではありません。例えば、がんではない前立腺の腫瘍、感染症や市販の鎮痛薬によってもPSA値が高くなることがあり、ここにあげた理由だけでは、PSAはスクリーニング検査として深刻な限界があることは明らかです。
<table>
<thead>
<tr>
<th>前立腺がんの過剰診断</th>
</tr>
</thead>
</table>
| 「前立腺がんは過剰診断の代表例と言われている。これは早期の診断によって前立腺がんによる早期死亡を免れる人がいないという意味ではない。しかし、私たちには、検診がどの人にとって有益となり、どの人が不要な治療を、つまりその人生に重大な悪影響を及ぼすことが多い治療を受ける結果となるのかを事前に知るべきではない。根本的な問題は、前立腺がんの検診と精査によって前代未聞の数の前立腺がんが見つかっていることである。また、一見不思議だが、そのようなのがんの多くが生命を脅かすことは一切ないということである。過去には、このような男性は前立腺がんがあることを知ることはなかった。他のことが死因となり、前立腺がんが原因というよりも、前立腺がんとともに人生を終えていた。このように悪性度の低い前立腺がんもすべて見つけることによって、これまでよりも相当多くの男性を前立腺がんであると診断している。このようなことから、「過剰診断」という言葉が使われている。これが検査を受けるかどうかを男性1人ひとりが真剣に考えるために必要なジレンマである」。

それでも、健康な男性に対する定期的なPSA検査が、前立腺がん検診として専門家の団体や患者団体によって熱心に奨励され、検査業者によって宣伝され、多くの国で広く採用されています。推定で年間3千万人の男性が検査を受けている米国では、PSA検診の支持団体がそれが賢明な行動であると信じて、検診の推進を声高に主張しています。PSA検診によって前立腺がんをできるだけ早く発見すれば患者の転帰が改善するというエビデンスもあるのでしょうか。検診に伴う有害性は知られているのでしょうか。
現実、PSA 検診の有益性と有害性に関する質の高いエビデンスがそろいつつあります。2010 年には、関連する全試験結果の系統的レビューが実施されました。その結果、PSA 検診によって前立腺がんと診断される可能性は（予想どおり）増えるものの、前立腺がんによる死亡率または全死亡率に影響を与えたというエビデンスはないことが示されました17。それでは、PSA 検診に対する賛否の傾向が変わってきているのでしょうか。PSA の発見者 Richard Ablin 氏は変わるべきであると考えており、変わらないうちに何年も言い続けています。2010 年には次のように語っています。「私が 40 年前に発見したことが、利益を追求した人達による公衆衛生の大惨事につながるとは夢にも思っておりませんでした。医療界は現実と向き合って、PSA 検診の不適切な使用を中止しなければなりません。そうすれば何十億ドルもの節約になり、体を弱体させる不要な治療から何百万もの男性を救うことになります」。最低限でも、男性が PSA 検査を受けるときは事前に、検査の限界と起こりうる悪影響を伝えることが必要です。ある専門家団体が次のように指摘しています。「検査を受ける男性に対して、生命を脅かすがんがあるかどうかはわからないが、やめておけばよかったと思うかもしれない一連の検査や治療を受けることになる可能性があることを伝えておく必要があります」18。

PSA 発見者の見解

「検査が一般的なものになって、きわめて高い犠牲を伴う公衆衛生の惨事の 1 つを引き起こしてしまった。それは私は痛いほどよくわかる問題である。というのも、1970 年、私は PSA を発見した。（中略）米国では前立腺がんの検査に莫大な費用がかけられている。PSA 検診には年間少なくとも 30 億ドルの費用がかかっており、その多くが米国高齢者医療保険メディケアや復員軍人援護局などの保険でまかなわれる。前立腺がんは盛んに報道されることもあるが、次の数字を考えてみたい。米国人男性が生涯に前立腺がんと診断される確率は 16%であるが、前立腺がんが死因となるのはわずか 3%にすぎない。それは前立腺がんの大半は進行が遅いためである。言い換えれば、高齢に達した幸運な男性は前立腺がんによって亡くなるよりも、前立腺がんを抱えて亡くなる見込みの方がはるかに高い。

その場合でも、検査の効果は硬貨を投げて裏か表かで決めるのとほとんど変わりない。私がこれまで長年かけてはっきりさせようとしてきたように、PSA 検査によって前立腺がんを検出することはできないし、もっと重要なことは、PSA 検査では、前立腺がんの 2 つのタイプ、死に直結するものとしないものを区別することは不可能であるということである」。
肺がん検診：早期発見とは言え、十分に早期とは限らない？

検診によって疾患を早期に発見できるかもしれませんが、それによってその後に差が出るほど十分に早期とは限りません（図を参照）。
がんの中には、例えば肺がんなど、患者に症状が現れる前に、そして検査でがんを検出できる前に、体内で広がっているものもあります。胸部 X 線検査（胸部レントゲンとも呼ばれる）によって肺がんを検出しようとする試みがこの問題をはっきりと示しています（図のステージ B を参照）。1970年代ヘビースモーカーを対象とした大規模試験数件から、がんが比較的早期に検出されても、それががんによる死亡の減少につながったというエビデンスはなかったことが示されました。胸部 X 線で検出された肺がんはすでに肺以外の部位にも広がっていました。このため、肺がん患者はがんと診断されてからの生存期間が長くなり、治療も早く受けましたが、患者の寿命に差が出たというエビデンスはありませんでした。
検診の売り込み

「検診を売り込むのは簡単である。リスクを大げさに話して相手を怖がらせる。検診の利益を大げさに話して希望を与える。そして害については一切口にしない。がんであれば特に簡単。これほど恐ろしい診断はない。それに、誰もがその呪文を知っている。『早期発見が最高の予防』。それを疑えば、誰かに頭部の検査が必要だと言われるかもしれない。『あなたが35歳を超えた女性なら、マンモグラフィ検診を必ず受けましょう。その重要性にまだ納得していないので限り、受けましょう。検診を受けないと、乳房の検査以上、早期発見が必要になる恐れがあります』—旧米国がん協会（ACS）ポスター—検診を売り込む広告はいたるところにある。ニュースでは、がんが早期に発見されたため、自分は命拾いした、と主張する有名人の話が繰り返し報道されている。過剰診断や過剰治療によって障害を負った人の話を聞くことはほとんどない。

人気のある雑誌には、乳がんの若い女性の話や、彼女たちは死への恐怖心と幼い子どもたちを残していくことへの不安について、感情をかき立てはするが、患者の立場を代表するものではない話が書かれている。

医療施設は無料検診を提供して患者を集める—商業戦略のために検診を利用しているのだ。公共広告というものは、上記の米国がん協会（ACS）のスローガンのように、広告側が自己主張しているだけだ」。

さらに最近になって、現在のヘビースモーカーと過去にヘビースモーカーであった人の合計53,000人を対象に、胸部X線による検診と、スパイラルCTと呼ばれる特殊なコンピューター断層撮影法（CT）による検診を比較した大規模なランダム化試験が実施されました。両群とも年1回の検診を3回受けるように指示されました。肺がんは胸部X線よりもスパイラルCTによってさらに早期に診断され、ごく一部の患者では発見が十分に早かったため（図のステージA）、治療による有用性が認められました（スパイラルCT群では肺がんによる死亡が346人であったのに対し、胸部X線群では425人）。しかし、この有益にみえる結果は、大部分の人が肺がんの誤診を受けるという犠牲を伴うものでした。全体として、年1回のX線またはCTスキャンによる検査を3回受けたヘビースモーカーを8年間追跡したところ、肺がんによる死亡が1,000人につき3人減少しました。一方、早期に発見されたにもかかわらず、13人が肺がんによって死亡し、233人が偽陽性の結果を受けたため、さらに精密検査を必要としました。
遺伝子検査：役に立つこともあるが、あやしいことが多い

つい最近まで「遺伝子検査」は、一般にまれな、遺伝子1個に起因する疾患、例えば小児期に発症する筋萎縮症であるデュシェンヌ型筋ジストロフィーや、通常は中年になってから発症する進行性神経変性疾患のハンチントン病などに限られていました。このような疾患を診断するために遺伝子検査が行われますが、健康な人であっても、その家族歴から問題の疾患を発症する確率が平均より高いことがわかっている場合、スクリーニング検査として実施されることもあり、家族計画の参考にすることもあります。

ただ、ほとんどの疾患は欠陥遺伝子1個が原因ではありません。疾患というものは通常、複数の遺伝子にあるリスク変異体の相互作用のしかたと、そのような遺伝子のリスク変異体とさまざまな環境因子との相互作用に影響を受けます。遺伝子のリスク変異体と環境因子の「決定的な」組み合わせがあってはじめて、1つの疾患が発症します。

ほとんどの疾患を異常な遺伝子が原因であることは非常に難しく、複雑なのにもかかわらず、メディアをはじめ消費者に直接、遺伝子検査の推進を呼びかける団体は、遺伝的リスクを調べるのの簡便性と遺伝子検査の長所を強調しています。検査を受けるには、唾液を採取してDNA解析会社に送るだけでよく、その会社にお金を払えば、あなたのDNAプロファイルが送られてきます。ところが、あなたが受け取る情報は、あなたが病気になるリスクをまともに予測することにも、ましてやそれに対処法があるとすれば何ができるのかについても、あなたの自身や医師の役に立つ見込みはありません。この「自分でできる」方法はスクリーニング検査が有用であるための基準を明らかに満たしていません（下記を参照）。ところが、検査結果によっては、おそらくあなたは不安になって意思決定が困難になり、例えば家族にまでその影響が及ぶこともあるでしょう。オーストラリアの医療ジャーナリストが次のように言っています。「生活の医療化が徐々に進むことに気づいている人なら誰にとっても、遺伝子検査市場は確かに最先端の技術です。そこでは、見た目は無害の技術によって、健康人がおびえた患者に変わってしまったり、病気や早期死亡につながる複数の遺伝的要因があることがわかった結果、その人の人間性が変わってしまったこともあります」。

35
自分の遺伝子で掛けをしない

「遺伝子変異1個（あるいはせいぜい数個）の知識に基づいて行動することは、カードを1枚みただけで、ボーカーの持ち札に自分の全財産を賭けるようなものである。遺伝的因子があなたにどのような影響を及ぼすのか、あなたの環境がどのような影響を及ぼすのか、あなたは知らない。さらにここには、カード5枚ではなく、遺伝子が2万個以上、環境因子が数千個もある。また、遺伝子1個の影響は、生活習慣や家族歴の影響、それ以外の保護遺伝子が存在することによって相殺されることがある。私たちの多くが欠陥遺伝子を持っているが、その遺伝子によって病気になることもない。

検診の目的、エビデンスが大切な理由

これまでにみてきた例は、広く普及した検診に飛びつく前に立ち止まり、検診制度プログラムの特徴を考えて、その目的は何かを確かめる価値があることを示しています。検診を勧められた人は、検査の対象疾患の症状または徴候がなく、あるいは本人はそれに気づいておらず、その疾患に対して医師の診察を受けたことがありません。個人または集団に検診を実施する目的は、治療が有益となる人を見つけるための検査を提供することによって、特定の疾患を原因として死亡するリスクや、健康を損なうリスクを減らすことにあります1, 21。検診は単に疾患を早期に診断するためのものではありません。早期の診断は誰の役にも立たないことも、害になることさえあります。

1968年の世界保健機関（WHO）の報告書に、検診の価値を評価するための基本的な基準の概要が示されました22。この基準がさらに改良されて、現在の医療提供のあり方に反映されています。検診の案内を受けた人には、その検査に関する情報を知ったうえで検査を受けるかどうか選択できるように、期待できる利益の他に考えられる害、影響や限界を含めて、十分かつ公正な情報が必要です。

以上の要点をまとめると、スクリーニング検査は次の条件がそろった場合に限り推奨できます。

- 検診の対象となる疾患が、公衆衛生の観点から重大な疾患であること。例えば、重篤な疾患や罹患者が多い疾患である
- その疾患に判別できる早期の状態がある
その疾患に効果があり、受け入れられる治療がある。したがって、検診によっ
て疾患の転帰に差が出る見込みがある
その疾患に対して妥当性および信頼性のある検査があり、検診を勧められた人
がその検査を許容できる
検診制度の質が高く、その検診制度が提供される環境での費用効率がよい
一般の人に提供される情報に偏りがない。質の高いエビデンスに基づいており、
期待できる利益と同時に考えられる不利益（過剰診断が過剰処置につながるな
ど）についてもはっきりと伝えている
検診の勧めが強制的ではない。つまり、検査を辞退することも妥当であること
が示されている
検診を勧められた人が身体的または心理的な不利益を受ける確率が、利益を享
受する確率よりも低いと見込まれる
検診によって発見された異常所見に対する診断と治療を受けることができる
十分な施設がある
2009年、昔から脳卒中予防に関心を持っていた、退職して間もないある神経内科の教授が、脳卒中とその他の心血管疾患合併症の検診案内のチラシが近所一帯に配られていたことを知った。

そのチラシは、血管検診の会社が発行したもので、地元の教会に行き、一連の検査を受けませんか（そして£152／$230／€170を支払う）（≒25,000円程度）という案内だった。とりわけ、チラシにある情報に事実上誤解を招くものがあったため、好奇心をそそられた。

教授はひとりで行ってみることにした。「最初は、超音波検査による大動脈瘤（心臓から血液を運ぶ大動脈の拡張）の検査だった。検査にあたった女性は、動脈瘤が見つかったらそれは何を意味するのかという話には答えたがらなかった。次は『血液循環の問題』をみるために足首と腕の血圧を測定した。それから、血管とは関係ないちょっとしたおまけとして、足首の骨粗しょう症の検査。そして・・『心臓の上部2つの心房の問題』をみるための心電図検査。・・そして最後に、『プラークの蓄積』をみるための頸動脈（首にある動脈）超音波検査を受けた。それがあっただけ何を意味するのかと尋ねてみたところ、血の塊ができて脳卒中を起こすことを教えてくれた。どのような治療を受けることになるのかとさらに聞くと、抗凝固薬らしいものを話をくれたが、手術については何も触れず、選択肢として手術もあるのかと直接尋ねたところ、そうだと答えた。『ちょっと危ないかな』と無邪気に聞いてみた。その答えは、危険かどうかはかかりつけ医のところで受ける精密検査次第であり、検査で異常が見つかれば、かかりつけ医と相談するようにということもあった。

この日の検査はいずれも（大動脈瘤の検査以外）何のプライバシーもなく行われた。医師はひとりもいないようだった。それに、その検査チームは偽陽性や偽陰性の結果が出た場合のこと、真の異常所見が出たときのその後の経過、また治療のリスクと効果のことなど、説明するようなそぶりは全く見受けられなかった。

これは単に検診であって、それ以上のものでもそれ以下のものでもなく、金儲けのために行われたものであった。その結果は21営業日以内に私に丸投げされ、私のかかりつけ医はそのような検査を頼んだわけではないので、異常所見があれば合ってようが間違っていないようが、その検査結果が感情および体に及ぼす影響に対処するしかなかった。（中略）この検診サーカス団は最初から最後まで、見つかった異常所見が及ぼす影響について説明することもなければ、責任を負うこともなく、弱い立場の人々の不安をかき立てることをしていったのである」。

これらの条件は本章の冒頭で記したメッセージの回答です。つまり、どのような検診も導入にあたっては、その有効性だけでなく、考えられる有害性についての質の高いエビデンスに基づいて決定する必要があるということです。

正常な人なんているのでしょうか

全身 CT スキャン

個人クリニックで提供されている検査の中に、頭部、頸部、胸部、腹部、骨盤を調べる全身コンピューターディスクカメラ (CT) があります。一般の人向けに提供されており、通常、かかりつけ医や総合診療医とは無関係に実施されます。全身スキャンは、結果が「正常」であれば安心できるという前提のもと、病気になる前に一歩進んだ状態を見つける方法として勧められることがよくあります。

このようなスキャンは費用が高いだけでなく、検査を受けても、疾患の症状や徴候がない人の健康全般に有益であるというエビデンスはありません。さらに、放射線曝露量は胸部 X 線の 400 倍以上にもおよび、相当なものです。あまりの状況に、2007 年に英国の「環境放射線の医学的側面に関する委員会」（Committee on Medical Aspects of Radiation in the Environment [COMARE]）は、症状のない人への全身 CT 検診の提供は中止すべきであると強く勧告しました。

2010 年に、英国政府はこの問題を協議した後、全身スキャンの利用に一層厳格な規定を適用する意向を発表しました。同じく、米国食品薬品局 (FDA) は国民に向けて、全身スキャンが健康な人にとって有益であるというエビデンスがないと警告し、次のようなコメントを発表しています。「全身スキャンによる検診を受けても、期待しているような『安心感』や、健康問題を予防できるような情報を必ずしも得られるわけではないことを、多くの人が理解していません。例えば、異常所見が深刻なものではないことや、正常所見が正確なものではないこともあれば」23, 24, 25。

バランスをとる

どんなに小さな疾患も見逃さないようにと熱心になり過ぎることなく、また同時に早期発見の恩恵を受けられる人を取りこぼさないようにすることは決して簡単なことではなく、不評な医療システムになるのがほとんどです。全員が恩恵を受けるためには、どの医療システムも推し、その資源を検証して使用する必要があります。この基本原則は、検診の導入は確かにエビデンスに基づいている必要があるだけでなく、導入後も、エビデンスが増えて環境が変わるようにしたがって、その検診が有用であるかどうかを継続的に検討して確認する必要があることを意味しています。検診を全体のうち一般の大きな集団に提供するべきか、ある疾患のリスクが高い集団に絞って提供するべきかどうかは重大な検討事項です。
<table>
<thead>
<tr>
<th>キーポイント</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 診断が早ければ早いほど、将来的によい結果につながるわけではない。事態がさらに悪くなることもある。</td>
</tr>
<tr>
<td>• 検診は、その効果に確かなエビデンスが示された場合に限り導入するべきである。</td>
</tr>
<tr>
<td>• 検診を導入しないことが最善の選択となる場合もある。</td>
</tr>
<tr>
<td>• 検診の案内を受けた人にはバランスのとれた情報の提供が必要である。</td>
</tr>
<tr>
<td>• 検診の利益は過大評価されることが多い。</td>
</tr>
<tr>
<td>• 検診の不利益は軽視されるか無視されることが多い。</td>
</tr>
<tr>
<td>• 検診の利益、不利益およびリスクに関する良好なコミュニケーションが必要である。</td>
</tr>
</tbody>
</table>
第5章 治療効果の不確実性にどう対処するか

本章では、新しい治療か古い治療かに関わらず、効果があると言われている治療にほぼ常につきものの不確実性について検討します。例えば、心臓発作を起こした人が定期的に酸素療法を受けることに疑問をもつ人はおそらくほとんどいませんが、その有用性を示す良いエビデンスは存在せず、有害な可能性があるとするエビデンスもいくつかあります。このような不確実性を伴う治療に対しては十分な検証が行われておらず、他の治療効果に関する議論ばかり行われてきました。

劇的な治療効果

まれだが認められている治療がある

ある治療について、効果に疑いの余地がないという非常に明確なエビデンスがあることはとても珍しいことです。そしてその場合、治療効果はしばしば劇的かつ迅速です。心室（心臓の下側の部屋）の筋収縮の調整がひどく悪くなり、心臓のリズム障害が起こる心房細動を例に考えてみましょう。これは医学的な緊急事態であり、数分で死に至ります。このような場合、胸部に装着した除細動器の直流電流で心臓を「素早く」動かすテクニックを用いて、心臓の適切なリズムを回復させます。上手くいけば、効果は事実上、瞬時に得られます。

劇的な効果（第6章P70を参照）が得られる他の処置の例として、膿瘍による痛みを緩和するための痛みのドレーン、重大出血で引き起こされたショック時の輸血、糖尿病に対するインスリン（膵臓が分泌するホルモン）などがあります。1920年代になるまで糖尿病患者は寿命が短く、非常に苦しんでおり、コントロール不能な高血糖のため衰弱していました。しかし、初期の動物試験の結果をもとにインスリンが急速に人に使用されるようになり、治療は目覚ましい成功をおさめました。当時としては、その効果はほとんど奇跡でした。その時代の別の例として、悪性貧血の患者への肝臓由来の薬剤があげられます。肝臓は後に、ビタミンB12の供給源として知られるようになりました。当時、致死的疾患であった悪性貧血においては、赤血球数が徐々に手の施しようもないほど減少し、患者は幽霊のように衰弱し、ひどく死んでいました。これらの患者に肝臓エキスを与えたところすぐに回復したことから、今では悪性貧血の患者にはビタミンB12が定期処方されています。

今世紀の初めにも、同様に驚くような結果が得られた例がいくつかありました。

ポートワイン母斑のレーザー治療

ポートワイン母斑として知られるあざは、皮膚の血管が拡張し、永続的な奇形が残ることが原因で生じます。顔に発症することが多く、持続的で、子どもが成熟するのに伴いし
ばしば色が濃くなっていき、容貌がひどく損なわれることもあります。長年にわたり凍結療法、外科手術、放射線療法等のさまざまな治療が試みられましたが効果はほとんどなく、多くの副作用が生じました。そんな中、レーザー治療の導入は素晴らしい結果をもたらしました。ほとんどのタイプの病変で、通常は1回のレーザー治療後に改善がみられ、レーザーから周辺の皮膚組織に放たれる熱による損傷も一時的なものとなっています。

慢性骨髄性白血病へのイマチニブ治療

慢性骨髄性白血病でイマチニブを投与された複数の患者においても、素晴らしい結果が報告されています。

1990年代後半にイマチニブが発売されるまで、この種の白血病には標準治療はほとんど効果がありませんでした。当初、標準治療では効果がなかった患者にこの新薬が試され、それをきっかけに患者の将来の展望が大きく改善しました。イマチニブ以前の時代と比較して、イマチニブは慢性骨髄性白血病の症状を安定化し寿命を大幅に伸ばすと考えられており、副作用も軽度であることがほとんどです。今では、イマチニブは第一選択治療とみなされています。

ママのキス

ローテックなアプローチにもまた劇的な効果があります。幼い子どもは、例えば、プラスチックのおもちゃやビーズ等の小物を自分の鼻に詰めてしまうことがあります。そして、それを取り除こうとしばしば鼻から一生懸命に息を吹き出そうとします。このような異物を鼻から取り出すための方法として、塞がれていない方の鼻孔を閉じ、同時に子どもの口に息を吹き込む「ママのキス」と呼ばれる対処法は、それ自体はシンプルですが非常に大きな効果があります。

イチゴ状血管腫の新規治療

劇的な効果のある治療は、時として偶然に発見されるものです。血管腫と呼ばれる乳幼児に発症する症状を例にあげてみましょう。このポートワイン母斑のような症状は、未熟な血管の奇形によってもまた起こります。血管腫では、小さな血管が集合して腫瘤を形成します。ほとんどの場合、血管腫は皮膚（通常は頭部や頸部）に発症しますが、肝臓等の体内の臓器にできることもあります。明るい赤色で隆起していることから、この皮膚病変はしばしばイチゴ状血管腫と呼ばれます。通常、誕生時には目に見えませんが、大抵の場合、生後1週間くらいで現れていきます。そして生後3カ月で急激に大きくなり、その後病変の成長は遅くなる傾向があります。ほとんどの場合、5歳になるまでに自然消退し、かすかにピンク色をした斑や皮膚のたるみが残ります。
しかし、血管腫の中には、例えば目を覆う、あるいは鼻を塞いてしまう等、発症部位によっては治療が必要なものもあります。また、他の合併症で治療が必要になる場合もあります。潰瘍性血管腫では感染が生じたり、病変が大きくなったりと心臓が腫瘍の血管に多くの血液を拍出しなくてはならなくなり、心不全が起こることもあります。

最近まで、問題のある血管腫に対してはステロイドが第一選択治療でした。その後、2008年に何名かの医師が別の治療を行ったことで、極めて偶然に劇的な結果が得られました。この医師達は、顔と右目的ほとんどを覆ってしまうような巨大な血管腫できた新生児の治療にステロイドを使用していました。しかし、治療したにも関わらず、その新生児は心不全を起こしてしまいました。驚いたことに、血管腫の外観は24時間以内に改善し始め、腫瘍は1週間以内に新生児が瞼を開くことができるまでに退縮しました。そして治療を開始してから6カ月後、血管腫は次第に消退していきました。その翌年、この医師達は10数人の子どもにプロプラノロールの投与を継続し、治療は同じように上手くいきました。他の医師達も少人数の子どもたちでこれらの素晴らしい結果を再現し、今ではより大勢の乳幼児を対象にプロプラノロールのさらなる研究が行われています。

段階的な進歩は一面の記事には載らない

「科学それ自体は、新しいニュースとしてはほとんど注目されることはないが、まさにその本質から言って『特集』ページのテーマにはなり得る。なぜなら、一般に科学は、突然の画期的な大発見によって前進するわけではなく、少しずつ現れてくるテーマや理論により前進し、多数の異なる説明段階にあるさまざまな分野のエビデンスにより裏付けられるものだからだ。それなのに、メディアはいつも『新しい大発見』ばかりを追っている。」

中程度の治療効果

治療効果があまり明白でないことの方が普通である

ほとんどの治療には劇的な効果があるわけではない、それらの効果を評価するには公正な検証が必要です。また、ある状況では劇的な効果があることもあるが、別の状況ではそうでないこともあります。

ビタミンB12は、明らかに悪性貧血には効果がありますが（上記を参照）、3カ月ごとの治療、あるいはもっと高頻度な治療が必要かどうかは今なお議論が続いています。このような疑問は、治療の選択肢を比較するための注意深い対照試験によってのみ答えが得られますが、さらに、股関節置換術は痛みを劇的に緩和する一方、人工股関節には複数の種類が
あり、相対的なメリットの差は非常にわずかですが、摩耗が早い場合もあることから重要な問題となります。

ポートワイン母斑のレーザー治療（上記を参照）についても、いまだ学ぶべきことが多くあります。レーザー治療は依然として「ゴールドスタンダード」ですが、それと同時に、なぜ何年か後にはいくつかの病変が再び濃くなってくるのか、あるいは、皮膚の冷却と組み合わせる等の別のレーザー治療の効果についても、研究が続けられています。9,10

心臓発作を起こしている患者の場合、診断時に速やかにアスピリンを投与すれば実質的に死亡リスクを低下させることができますが、心臓発作や脳卒の中の予防のためにアスピリンを使用することについては効果よりも害の方が大きくなるかどうかは、循環器系の基礎疾患があるかどうかに左右されます。心臓発作、脳卒中、循環器系を原因とする死亡リスクの減少という利益は、出血、特に脳内への出血を含む脳卒中や、腸からの出血という害とのバランスをとることが必要です。すでに循環器疾患のある患者では、アスピリンの利害は大きく上回ります。しかし、その利害は、健康な人々にとっては出血リスクを明らかに上回るわけではありません（第7章を参照）。

診療医の意見が異なる場合

多くの疾患や症状に対して、治療効果がどの程度あるのか、どの治療がどの患者にとって最善であるのかについては、大きな不確実性を伴います。治療に対して意見が異なっている場合もあれば、非常に強い意見をもっている医師がいる場合もあります。このことは、1つの症状の治療にも大きなばらつきが生じることにつながります。

1990年代に、この本の著者、Iain Chalmers 氏は米国での休暇中に足首を骨折し、ある整形外科医の治療を受けました。その外科医は、添え木を彼の足につけ「腫れが引いたら、次は下腿にギブスを6週間つけましょう」と言いました。数日後、Iain 氏は家へ帰る途中に地元の整形外科クリニックを受診しましたが、そのクリニックの英国人整形外科医は「足にギブスをつけないなど、全く不適切なことです」と、ためらうことなくその処置を否定しました。専門家の間でこのような明らかな不確実性が存在したことから、Iain 氏は、どちらの治療がより良いかを確認するための対照試験に参加できないか尋ねました。

その英国人外科医は答えました。「対照試験は、自分達が正しいかどうか確信が持てない人々のために実施されるものですよ。私は自分が正しいことがわかっています」。

なぜ専門家の意見がそこまで顕著に異なり、そしてその場合、患者はどうすれば良いのでしょうか。どちらの外科医も、正しい対処方法についてはそれぞれ明確でした。ところが、一般的な骨折を治療するための最善の方法については専門家間で見解が大きく異なっており、不確実性がはっきりと現れました。どちらの治療が優れているかを示す良いエビデンスはあったのでしょうか。あったのならば、外科医のうちの1人はそれを知っていただけでしょう。あるいはどちらの外科医もそれを知らないかったのでしょうか。または、どちらの治療がより良いか、誰も知らなかったということなのでしょうか（図を参照）。
この2人の外科医は、おそらく、重視する治療の目標が異なっていたのかもしれません。米国人外科医は、痛みの緩和をより重要視してギブスをつけることを推奨したのかもしれませんが、英国人外科医は、このような処置で足を固定する際に起こる筋萎縮の可能性をより心配していたのかもしれません。だとすると、その外科医たちはなぜIainにどちらの転帰がより問題であるかを尋ねなかったのでしょうか。その後20年経ってもまだ、この非常に一般的な骨折の状態をどう管理すべきかについては不確実なままなのです。

そしてここに、またいくつかの別の問題があります。まず、この推奨された2つの非常に異なる治療アプローチを比較する信頼性の高いエビデンスはあったのでしょうか。あったのなら、そのエビデンスは、Iain氏あるいは、彼とは異なる希望をもっていた可能性のある他の患者が重要視していたであろう転帰（痛みの緩和、筋萎縮の軽減など）に関して相対的な効果を示していたでしょうか。あるいは、必要な情報を提供してくれるエビデンスがなかった場合にはどうなるのでしょうか。

足首を骨折した患者

<table>
<thead>
<tr>
<th>ギブスをつけないか</th>
<th>危険性のリスクを伴う臨床的な不確実性が存在する</th>
</tr>
</thead>
<tbody>
<tr>
<td>下肢にギブスをつけるか</td>
<td>よりよい患者のケアに関する新しい知識が得られる</td>
</tr>
</tbody>
</table>

ランダム化試験に参加して治療する
医師はどうすべきか

治療効果の不確実性に取り組まないと、回避できたはずの多くの苦痛や死につながることもある。ジアゼピンやフェニトインが子癇への抗けいれん薬として導入された際、何十年も使われていたマグネシウム硫酸塩との比較がされていれば、苦痛を経験したり死亡したりする女性は何十万人も減っていただろう。同様に、全身ステロイド療法の脳の外傷性傷害への効果が評価されてこの治療が広まっていれば、何万もの不必要な死を回避できたことだろう。これらは、医師には治療効果の不確実性に取り組むという職業上の責任があることを示した数多くの例の２つである。

治療選択肢に関して信頼性の高いエビデンスがない場合でも、どう対処するか明確にし、その不確実性について患者と話し合う準備ができている臨床医もいます。例えば、脳卒中のケアを専門にしているある医師は、「研究のエビデンスでは、私の患者にとって脳卒中ユニットで治療する方がはるかに結果がよいことが示されていますが、多くのタイプの患者にとって、血栓溶解薬を服用すべきかどうかは不確かなままです（第11章も参照）」とコメントしています。彼は、患者と治療選択肢を話し合う際に、次のように説明しました。「これらの薬剤は害よりも利益の方が大きい可能性がありますが、まれに害の方が大きくなる患者さんもいます」。また、害と利益のバランスがはっきりしない患者に対しては、公正な比較対照試験の裏付けがある治療法ならば、不確実性は軽減され、推奨することができると説明しました13。血栓溶解剤のいくつかの側面には、不確実性が残っています14。
プロフェッショナルとは不確実性に対応する人

「プロフェッショナルであることの１つの重要な条件は（中略）医学の不確実性を見極め、それに対応する能力をもっていることだろう。専門家は日々、病気の起こる理由、診断、治療についての不確実性に直面し、対処している。しかし、これらの医学的活動のあらゆる分野に内在する不確実性ははっきりと認識されることがあまりなく、専門家の中には、とりわけ患者対応において、不確実性を受け入れることに依然として抵抗を感じる人々もいる。不確実性は、人の健康を改善するために行われる医学研究の最大のきっかけであり、それが英国医学研究所の役割の中心を成す。将来的には、医学の専門家は、どこにまだ不確実性が存在し、それらへの対応に必要な継続的研究はどんな研究なのかを知るために、自身の診療分野に関連のある蓄積された研究結果を理解することがますます重要になるだろう。まとめると、患者の利益につながる研究を認識できている人が今後は真の専門家と言えよう。医学専門家の中には、研究に積極的に参加する人々もいるだろうが、研究に全員が参加すべきであり、必要に応じて、その研究結果を自身の専門診療で実践するために患者を関与させるようにすべきである」。

From: Medical Research Council response to Royal College of Physicians consultation on medical professionalism. 2005

未熟児の呼吸障害に対するカフェイン

特定の疾患に用いられる治療の種類に大きなばらつきがあるということは、治療間の相対的な効果について、専門家間の認識に不確実性が存在するという明らかな証拠です。そして確立された治療があるということは、公正な検証によってこのような不確実性を解決しようとするには非常に長い時間が必要かということを示すかもしれません。未熟児に対するカフェインの使用が分かりやすい例です。未熟児は、多くの場合適切に呼吸ができず、一時的に呼吸が止まることもあります。この症状は、未熟児無呼吸発作として知られている妊娠期間34週末まで生まれたほとんどの新生児に発症します。1970年代後半に、カフェイン治療によってこのような症状が緩和することが示され、その後一部の小児科医によって用いられるようになりました。しかし、カフェインの効果については依然として議論の余地がありました。公正な検証で、カフェインによって無呼吸発作が減少することが示されましたが、多くの小児科医は、この症状がカフェインの使用を正当化するほど重篤だとは考えず、さらに一部の小児科医は、このような小さな新生児には安全でないかもしれないと懸念していました。このことは、カフェイン治療が行われた新生児に行われなかった新生児がいたことを意味しています。治療が導入されてから30年以上経ってこの大きな不確実性が、大規模な国際臨床試験によって最終的に評価されると、この単純な治療によっては呼吸困難を緩和するだけでな
く、非常に重要なことです。脳性麻痺や幼児発達の遅延を伴わない長期生存の可能性を有意に改善することがわかりました。この治療が導入されたときにこの不確実性を検証していれば、障害を発症する新生児は少なくなっていたと考えられます15, 16。

早期分娩に対する抗生物質

有益な効果があると思われている治療も、また無害という思い込みがある治療も公正な検証によってどちらも誤りであると示される可能性があります。医師は、特に絶望的な状況で希望を与えることができる場合は、誠意をもって治療を行います。例えば、「無症候性」感染は早期陣痛および早期分娩を誘発する可能性があるということを示唆する説がありました。この説に基づいて、医師は、妊娠期間を延長する可能性があることを期待し、一部の妊娠に対して抗生物質を処方しました。このような抗生物質の使用が深刻な問題を引き起こすと真剣に考えられた人はいませんでした。実際に、「害はならないだろうから、これを試してみよう」という気持ちで、女性自身が抗生物質を強く望んでいたという例がいくつかあります。

処方時の見込みについて話す2人の医師

架空の2人の医師の会話の中で、一般開業医は以下の点を指摘している：「私たちは多くの作業を見込みで行っているが、君もわたしも喜んでそれをやっているわけではない。効果があるものを調べる唯一の方法は適切な試験だが、その箍は膨大だ。ではどうすればよいのだろうか？したがって、臨床経験によって上手くいくこともあるだろう。上手くいかなくても、私たちがしたことを正しいことだと思うが、それでもあるだろうが、私たちが行っているのは臨床試験と呼ばれるものではないため、それを規制する人もそこから学ぶ人もいない」。

最終的にこの治療の公正な検証が行われると、その結果には明らかな臨床的な意味合いが認められました。まず、有益性が認められませんでした。さらに、抗生物質に曝露された新生児は、比較群の新生児と比べて、脳性麻痺および発語、視覚、步行に障害がある可能性が高かったことが、この試験に参加した新生児の長期追跡調査によって示され、そのような抗生物質の害は、抗生物質が女性に処方されてきた数十年にわたり認識されていませんでした。その効果についての公正な検証による十分なエビデンスもありませんでした。よくあることでですが、「通常の」診療で適切に評価されていない治療を受けた場合、研究において同じ治療を受けた場合よりも不利益を受ける可能性が高いのです。言い換えれば、公正な検証の一環として薬剤を服用しなかった場合、一般的に危険性は上がることです17, 18, 19。
乳がん

専門家の間に存在する不確実性についての別の例が、乳がんの治療（第3章参照）によって示されています。手術、放射線療法、および化学療法の使用にはかなりのばらつきがあります。超早期乳がんや「仮性」乳がんの最善の治療法については、脇の下から切除するリンパ節の理想的な数、あるいはすべてを切除する必要があるのかどうかと同じように未解決です。加えて、治療に伴う疲労の緩和や、腕のリンパ浮腫（脇の下の手術や放射線療法による苦痛を伴う重症の後遺症）治療の最善の方法など、患者にとって特に関心のある話題はまだ十分に検討されていません。

治療の効果に関する不確実性への対処

ここからどこに向かうのでしょうか？臨床医は、大人数を集めた信頼性のある研究試験の現存する系統レビューやが得られた、治療に関する最新のエビデンスを利用する必要があります。その上で、治療に関する不確実性が残っていることが明らかになった場合は、このことについて患者と話し合い、なぜそうなのかを説明するための準備をする必要があります。そして初めて、患者と臨床医は、患者の希望を考慮し、選択肢について一緒に話し合うことができます。このような話し合いによって、認識し、対処することが必要なさらなる不確実性が明らかになる場合があります。不確実性が依然として存在することを一緒に認識することによってのみ、治療がより適切で安全なものになるように着実に進めることができます。したがって、不確実性は進歩の必須条件であり、「失敗」を認めることではないのです。不確実性に対処するこの前向きな姿勢は、現在一部の専門家による指導に反映されています。英国では、General Medical Council（英国医事委員会）の「Good Medical Practice（良質の医療のための原則）ガイダンス最新版」において、医師に対し、能力を維持し向上させる一環として、「治療の効果に関する不確実性について対処しなければならない」と指導しています。そのためには、患者と臨床医はより良い研究をデザインするために協力しなければなりません（第11章参照）。

公正な検証の一環としての治療の実施

では、昔からあるにせよ最近のものであるにせよ、適切に評価されていない治療の効果について重大な不確実性がある場合にはどうなるでしょうか？答えは、すでに説明したように、脳卒中患者のケアを行った医師の例にならうことです。すなわち、不確実性を解消するためには、適切な評価がなされていない治療は、望ましい効果および望ましくない効果の両方を検証する目的でデザインされた研究の中だけで行われるべきだということです。医学倫理学者はこのような言い方をします：
（異なった）治療間の相対的で重要な違いが不確実な場合、患者ごとに治療効果を確信することができないように、それらのうちのどの治療を用いるのがよいか、確信を得ることはできません。したがって、適切な試験の完了前にあらかじめ主張することは、非合理的かつ非倫理的なように思います。このように、『患者にとって最良の治療は何ですか？』という質問に対する答えは、『臨床試験』です。試験治療として治療を行うことなのです。これは実験ですか？はい。しかし、それは不確実性の下での選択と、データ収集という意味です。選択が『ランダム』であることは重要ですか？論理的には、いいえ、です。結局のところ、不確実性の下での選択のためのより良いメカニズムは何なのでしょうか？」

公正な検証のプロセスとして、つまり臨床試験として治療を行うことにより、患者の転帰に大きな違いを生む可能性があります。小児白血病の話は、このことの非常に顕著な例を示しています。1960年代までは、事実上すべての白血病の小児が、診断された直後に亡くなりました。現在では、100人中約85人の小児が生存しています。これは、現在の標準治療とそれとは別の新たな治療と比較したランダム化試験に、ほとんどの白血病の小児が参加したため達成されています。ほとんどの小児がん患者のための最良の治療選択肢は、そのような試験への参加によって決まります。

患者は不確実性に対処することができるか？

「ではわれわれは、治療の効果に関する不確実性にどのように取り組んでいるのか？（中略）患者は医学研究や医療上の決定におけるパートナーであるという一般的な認識もかかわらず、治療の不確実性について議論することは難しいと一部の医師は消極的である。単に不安を招くことを恐れている医師もいる。心からの心配であることに間違いがないが、パターンライズである。真実を伝える倫理的義務があるからといって不確実性を明示することまで及ぶかどうか、また、精神的負担から患者を守るための道徳的責任がある、という2つの倫理的議論の間のバランスを理解に自らの行動を正当化しようとする医師もいる。患者は不確実性を受け入れる心構えができているかを私たちは知る必要がある。おそらく、患者は医師が思うよりもはるかに適応力がある。」

臨床試験が実施できないならば、その新しい治療について、標準的な方法、例えば、疾患の診断に用いられる臨床検査あるいはその他の検査、および治療効果測定の検査を含むチェックリストを用いることによって、その結果を最低限記録する必要があります。この記録調査の計画は、臨床試験の場合と同様に、データベースに登録することもできます（第8章を参照）。そうすることで、その結果は、未試験の治療を受けている患者やあらゆる状況にある患者の利益となる知識体系に役立つ可能性があります。医療ITシステムにはすでに
に莫大な資金が投入されており、患者や一般社会の利益のための情報収集に、いつでも利用することができます（第11章参照）。

治療効果に関する不確実性の解消には、効果的かつ効率的に対処するための進歩が必要です。本書の後半で、それらの一部、特に患者の参画について議論します（第11章および第12章参照）。しかし、先に述べたように、ここで強調したい特別な問題があります。治療効果に関する情報が不十分な場合、その価値と不利益の可能性についてより多くのことがわかるまで、臨床医は、正式な評価の一環として臨床試験のみで治療を行うべきです。それによって知見を増やすことができます。しかし、実際には、研究規制のシステム（第9章参照）など一部の一般的な流れにより、リスクを制限するこの方法が妨げられています。

英国のある小児科医は、30年以上前、患者の半分に治療を行う（すなわち、その効果について調べるため、比較対照試験において患者の半分に新しい治療を、もう半分に既存の治療を行う）ためには許可が必要でも、同じ治療を標準的な処方としてすべての患者に行いたい場合には許可が必要ないという要点に気づき、悩みました。この非論理的なダブルスタンダードはいまだに繰り返され、臨床医が治療の効果に関する不確実性を解消する取り組みを妨げています。全体的な効果は、医療従事者が患者の治療経験から知識を生み出すのを邪魔しています。米国の社会学者Charles Bosk氏はかつてこう述べました。「経験から学ばないとするならば、何でもありになってしまう」。

不確実性について説明するには、医師のスキルとある程度の謙虚さが明らかに必要です。どれが最善の治療法か誰もわからないということを臨床試験の参加者に説明しようとする場合、多くは不安を感じます。しかし、一般社会の意識が変わり、神のように振る舞う横柄な医師は次第に相手にされなくなりました。医師として自分たちも人間であることを率直に認め、治療の選択肢をより確実に提供するための研究に患者の支援と参加を必要とすると認める教育をする必要があります（第11章および第12章参照）。

多くの臨床医や患者にとっての主な障害は、治療の公正な検証の方法に精通していないことです。次の章でこの課題を議論しましょう（第6章参照）。
キーポイント

・ 劇的な治療効果はまれである。

・ 治療効果に関する不確実性はごく一般的にみられる。

・ さまざまな治療の間の効果は通常わずかな差であり、それらを確実に検出することが重要である。

・ 治療効果に関する重大な不確実性への答えが誰にもわからない場合は、不確実性を減らすための措置を講じる必要がある。

・ 治療の効果に関する不確実性を減らすことに貢献するために患者自身がもっと多くのことができるだろう。
第6章 正しい治療の検査について

多くの読者は「治療法の公正な検証に関する原則」についてこれまであまり聞いたことがないかもしれませんが。しかし、この原則は日常生活においては自然と直感的に物事を把握するとき、この原則に基づいて把握しています。さらに、多くの場合、むやみに難解な言葉で説明されています。そのため、多くの人がこの原則は自分が理解できるようなものではないと感じ、この問題に対して萎縮してしまいます。続く2つの章を通じて、皆さんが実はもうここの重要な原則をよく知っていることを理解し、この原則が重要である理由に納得していただくことを願っています。これらの問題をより詳細に調べたい方は、www.testingtreatments.org と The James Lind Library (www.jameslindlibrary.org)で関連資料を参照してください。

治療法の公正な検証はなぜ必要なのかでしょうか

自然治癒

多くの健康上の問題は、治療せずにいると悪化し、中には治療しても悪化するものすらあります。一方で、勝手に治るものもあります。つまり、健康上の問題は「自己完結している」ものであると言えます。開発中の一般的な風邪の治療法を検証している研究者は「風邪は一生懸命治療すれば7日間で治りますが、放置しても1週間で治る」と述べています。さらに皮肉を込めて「自然が治療し、その料金を医師が受け取る」とも述べています。もちろん、治療が状況を悪化させるような場合もあります。

特別な治療をしなくても病気から回復することはよくあることなので、治療法を検証するときは、治療しないときの病気の「自然な経過」と比較を考慮しなければなりません。喉が痛かったとき、胃が痛んだとき、皮膚に見られない発疹があったときを考えてみてください。正式な治療を受けなくても、このような症状は、おおむね勝手に消失します。一方で、治療を受けたことがあれば（たとえそれが効果のない治療であっても）、その治療によって症状が消失した、と考えてしまいかがちです。一言で言えば、病気の自然治癒（自発的寛解）の可能性を含む「その病気の自然経過」を知ることで、不必要な治療を受けたり、まだ確証のない治療に誤った信頼を寄せてしまったりすることを防ぐことができます。

治療効果のあるなしを決めるのは、病気の症状が出たり消えたりしているときには特に困難です。例えば、関節炎患者が、この病気にありがちな耐え難いと再発がみられると、何か助けになるものを探すのは當然のことでしょう。受けける治療が主流か非主流か、また効果があるかないかに関わらず、治療を受けた後に痛みが改善するのは、単に再発そのもののがおさまるからです。しかし、医師も患者も、症状の改善とは何か
治ったことを誤解する

ダイバーや他の多くの人が、タバコを吸うことで潜水病（急性減圧症候群）が治ったと思い、またそれは証明された事実であると主張している。また、タバコによる害はなかったという主張もある。この議論には、最初に大きな間違い、次にはひどい不条理が存在する。（中略）ある男が病気になり、その症状が最もひどいときにタバコを服用し、その後自然治癒によりその病気の症状が軽減していき、結果的に回復したとき、なんとそれが、いかにもタバコが奇跡を起こしたということになるのだ。

James Stuart, King of Great Britaine, France and Ireland.A counterblaste to tobacco.In:The workes of the most high and mightie prince, James.Published by James, Bishop of Winton, and Deane of his Majesties Chappel Royall.London: printed by Robert Barker and John Bill, printers to the Kings most excellent Majestie, 1616: pp 214-222.

楽観主義と希望的思考の有益な効果

受けた治療のおかげで症状が改善した、と考える心理的な理由は、現在は詳しく解明されています。ある出来事が別の出来事の後に起こると、最初の出来事がもつの出来事の原因であると誰でもが考えがちです。そして、私たちはパターンのないところに何かパターンを見出しがちです。コイン投げ、株式市場価格、バスケットボールのショットなど、さまざまな分野で何度も説明されてきた現象です。人はまた「確証バイアス」と言われる偏りを持つ傾向があり、見たいものばかりを見ようとします。つまり「信じるもののが見える」ということです。自分の信じることを裏付けるものを見つけると「自分が正しい」という確信はより強くなっていくでしょう。対照的に、自分の見解と矛盾する情報を認識しなかったり、簡単に受け入れなかったりするでしょう。そのため、そういった自分の見解と矛盾する情報には無意識に目をそむける傾向にあります。
信じるものが見える

英国の医師、Richard Asher 氏は、医師に向けたエッセイの中で次のように指摘しています。

「あなたが自分の治療法をただただ熱心に信じることができれば、たとえそれがコントロール（対照）試験で効果がないことが証明されていたとしても、治療結果は非常に良くなり、患者の病状は改善し、そして高い収入につながります。私は、これがわれわれ誇り高いいプロフェッショナル集団の中の、一部の能力の劣るメンバーが目覚ましい成功を遂げていることの理由だと信じています。流行に乗って成功している医師たちが、よく統計や対照試験を忌み嫌っているのも同じ理由によると考えます。」

ほとんどの患者さんと臨床医は治療に効果があることを期待しています。彼らが「何かが効果を発揮している」という結論に至ってしまう理由は、「単に「治療が効果を示すはず」という自らの信念に単純に合致しているからかもしれません。彼らは、自分の信念に反する情報を探さないし、そういった情報を無視します。その薬が症状を緩和するのに役立つと信じている患者では、実際には有効成分が入っていない薬（偽薬、「プラセボ」と言われる）であっても症状が改善してしまうことがよくあり、この現象は、こういった心理的効果で説明することができます。砂糖の錠剤、水の注射、不活性にしてある電気器具による治療、小さく切開して縫合した以外何もしなかった手術であっても、患者が改善を報告することがあります。

さまざまな体重減少食事法を比較する検証の例をあげてみましょう。研究者は、人気テレビ番組の視聴者から体重を減らしたい人を募集し、6つの食事法のうちのどれか1つに割り付けました。食事法の1つ、バイリン茶は、体重減少効果のある方法として宣伝されていました。6つのすべてのグループで挑戦者たちの体重が減少しましたが、一部の食事法では他の食事法より大幅に減少しました。しかし、テレビで結果が発表されたとき、食事法の1つである「にんじんダイエット」は体重減少用の食事法ではないことが発表されました。この「にんじんダイエット」は、体重減少用の「基準」を示すために試験に加えられたものであり、体重減少は6つの食事法のいずれのせいでもなく参加者がこれまでの食習慣を変えようとしたことによるものでした。
「印象」を超える必要性

患者が、何らかの効果がある、と信じているなら、それで十分ではないでしょうか。きちんと治療効果を評価し、効果があるのか、またどのように作用するのかを解明するため、研究に労力と費用をかけることはなぜ重要なのでしょうか。それには少なくとも2つの理由があります。1つは、効果のない治療法の存在によって、私たちの目が効果のある治療法に向かない可能性があるからです。もう1つの理由は、ほぼすべてとまでは言えなくても、多くの治療法に有害な副作用があり、有害な副作用には短期間のもの、長期間のもの、未だ見つかっていないものがあるからです。患者が副作用のある治療法を受けなければ、有害な影響を免れます。したがって、有効性が非常に低い治療法や、利益を上回る害をもたらす可能性のある治療法を見つけることは重要です。研究を行うことで、治療がどういう効果を持つか重要な情報が解明され、より有効でより安全な治療法を開発できる可能性が高まります。

治療効果の研究はいろいろなところに影響をもたらしますが、英国国民保健サービスや米国退職軍人保健局など、すべての患者の間で公正に医療資源を共有しようとしている組織には特に大きな影響をもたらします。医療に利用できる資源が限られているため、このような組織では、必然的に、どの治療法の価値が高いかという決定を行います。ある患者に効果がない治療法を行うことは、他の患者から効果のある治療法を奪うことを意味します。

このことは「患者や医師の持つ治療効果に対する印象や考えは重要ではない」と言っていわけではないのです。実際、今後有望とみなされている新しい治療法を正式に検証する出発点となることが多くあります。こういった印象を正しく研究して追跡検証し、治療法の有効性と有効性の両方を特定できる場合があります。例えば、20年前にジェチルスチルベストロール（DES）で治療を受けた女性で、この薬が20年後に娘に希少膣がんを引き起こした可能性があると示唆された例があります。（第2章 p12-13を参照）。高血圧で処方された新しい薬の今まで知られていなかった副作用についてある患者が報告していたとき、患者とその医師は、この報告が史上最高のベストセラー薬となるシルデナフィル（バイアグラ）の発見につながるとは想像もしていませんでした。

このように、治療法の効果に対する個人の印象は無視すべきではありませんが、治療成績の正しい結論を導き出すための信頼できる根拠とは言い難いものがあり、ましてや他人に薦めることなどできません。

では、公正な検証とはなんでしょうか

マスメディアの最新の医療の進歩についての報道を、額面通りに受け取ってはいけない、ということはよく知られています。しかし、残念ながら、評価が高い学術誌などに掲載されていても、治療報告には注意を払う必要があります。治療法が誤解を招いてしまう場合
や、行き過ぎた主張になっているのはよくあることで、それらの報告の信頼性を評価できることが重要です。

私たちは、治療効果の報告を額面通りに受け取ることで、2つの問題を冒しています。有効な治療法を、誤って実際には効果がないと結論づけたり、場合によっては有害であると結論づけたりすることがあります。逆に、効果がない、さらには有害な治療法を、誤って実際に効果がある、と結論づけることもあります。治療法の公正な検証は、信頼できる治療効果の情報の得るため、(i) 似たようなもの同士を比較し偏りの影響（バイアス）を低減し、(ii) 偶然性を考慮に入れ、(iii) 関連する信頼できるすべてのエビデンスを評価します。この章と次の2つの章では公正な検証の3つの主要な特徴について説明します。

似たようなもの同士を比較する

比較の重要性

治療法を公正に検証するには比較が重要です。医師と患者は、2つの治療法の相対的なメリットを頭の中で比較するでしょう。例えば、以前行った治療法の反応と比較して、自分たちや他の患者の今回の治療法では違った結果である、という比較をすることもあるでしょう。場合によっては、もっときちんと比較するときもあります。早くには9世紀に、ペルシア人の医師 al-Razi が、髄膜炎の患者がどうなるかを瀉血した場合と瀉血していない場合とで比較し、瀉血の有効性を検証しました。通常、治療法は、異なる治療法を受けた患者群と比較することで検証されます。治療法の比較が公正であるためには、似たような患者同士を比較する必要があります。つまり、患者群の間での唯一の系統的な違いは、それぞれが受けた治療法だけであることを保証する必要があります。この考え方には今に始まったものではありません。例えば、1747年、James Lind 医師は、大英帝国戦艦ソールズベリーの艦内で壊血病の6つの治療法の比較を開始するにあたり、(i) 致命的疾患である壊血病の同じ重症度の患者を選択することを注意し、(ii) 患者は同じ基本食を摂取させ、(iii) 患者が艦内で同等の状況で収容されるように調整しました（第1章 p1を参照）。Lind 医師は、治療法そのもの以外の要因が患者の回復可能性に影響を与えかねないことを見出しました。

検証を不公正にする方法の一例は、病気になったばかりでまだ症状が重篤化していない早期段階の患者には、ロンドンのロイヤル・カレッジで推奨されていた硫酸などの壊血病に推奨されている薬のどれかを勧める、すでに死に近づいている患者には、船員の推奨する柑橘類などで治療を勧めるというやり方です。もしこの方法を使っていたら、硫酸の方が実際には症状を悪化させたとしても効果があるようにみえたことでしょう。関連するすべての点で似たようなもの同士が比較されるように注意を払わない限り、このような偏りが生じる可能性があります。
劇的な効果のある治療

患者は時には過去の自分の経験や自然経過と劇的に異なる治療反応を体験することがあり、その場合、注意深く検証を行わなくても治療効果の結論を信頼してしまうことがあります（第5章p.45-47を参照）。肺が潰れた（気胸）患者の胸腔に針を挿してたまった空気を出すことは、即時に効果が出るので、この治療の利点は明らかです。痛みに対するモルヒネ、糖尿病性昏睡におけるインスリン、関節炎の痛みに対する人工股関節も劇的な効果があります。また、治療の有害作用が劇的な場合もあります。薬物が重篤で致死的なアレルギー反応を引き起こす場合もあります。その他にも劇的な有害作用として、サリドマイドに起因する四肢の変形などがあります（第1章p4を参照）。

しかし、有益か有害かにかかわらず、このような治療法の劇的な作用はまれです。ほとんどの治療法の作用は劇的なものではなく中程度ですが、それでも知っておく価値はあります。例えば、モルヒネはその投与スケジュールに有効で安全か、また遺伝子組換えインスリンは動物インスリンより優れているかどうか、あるいは安価な人工股関節よりも新開発された20倍高価なものは追加費用を払ってでも患者が良いと思うのかどうか、などを明らかにするため、慎重に実施された検証が必要です。こういったケースでは、必ず、不公正な（偏った）比較と、それに基づいた結論を避ける必要があります。

中程度でも重要な効果のある治療法

現在治療を受けている患者と、過去に同じ病気で違う治療を受けた似たような患者との比較

研究者は、現在治療を受けている患者群と、同じ病気で過去に他の治療を受けた似たような患者群を比較することがあります。治療効果が劇的である場合、この比較によって信頼できるエビデンスを提供できます。例えば、過去には絶対的に死に至る病気であったが、新しい治療法で患者を救えるようになった場合などです。しかし、治療法による効果の違いが劇的ではないが、それでもなお研究・検証する価値があるような場合に、このような「過去対照群」を用いた比較は、問題が生じる場合があります。研究者は、確実に似たようなもの同士を比較するために統計的調整と分析を用いますが、比較群の患者の特性で記録のないものは分析時に考慮することはできません。その結果、このような場合には、正確に似たようなもの同士を比較していると言えなくなります。

違う時期に全く同じ治療を受けた似たような患者群の治療結果を比較すると、これが問題であることを理解できます。19例の進行した肺がんの患者群で、異なる時期に全く同じ治療法を受けた同等の患者群の年間死亡率を比較して分析します。死亡率にわずかであっても差が見られたとしたら、この差は非常に重要です。死亡率は24%から46%の幅がありました。この差は、治療法の違いによるものではないことは明らかで（同じ治療法でした）、
患者群に検出可能な差があったためでもありませんでした。死亡率の違いは、検出不可能な患者群の差か、記録されておらず比較の際に調整できなかった何らかの差（看護や感染症管理の改善など）を反映していると考えられます。

同じ期間にたまたま異なる治療法を受けた、似たような患者群を比較する

治療法の効果を評価する方法として、同じ期間に異なる治療法を受けた、似たような患者群の経緯と治療結果を比較する方法は長く用いられています。しかし、このアプローチもまた、大きな誤解を招く可能性があります。意味のある比較をするためには「過去対照群」を用いた比較の場合と同様に、異なる治療法を受けている人々のグループが、治療開始前に十分に似ていたかということです。言い換えるなら、似たようなもの同士が比較されているかどうか、という点です。「過去対照群」のときと同様に、研究者は、確実に似たようなもの同士を比較するために統計的調整と分析を用いますが、それが確実であるのは、患者の特性が記録されている場合のみです。これらの条件が満たされることはまれで、こういった分析は非常に慎重に行う必要があります。条件が満たされていない分析を信じ込んできることで、大きな間違いにつながりかねません。

例として、ホルモン補充療法（HRT）があげられます。閉経中および閉経後にHRTを使用した女性群を、それを使用していないとみられる同等の女性群と比較しました。これらの比較では、HRTが心臓発作や脳卒中のリスクを軽減することを示唆しており、事実であれば非常に喜びのニュースでした。しかし、残念ながら事実ではありませんでした。その後の比較では、治療が始まる前に比較群同士が同等になるように設計され、実は全く逆で、HRTは心臓発作および脳卒中を増加させました（第2章p13-15を参照）。先ほどの比較で、心臓発作および脳卒中の発症率で明らかに差が出たのは、HRTを使用した女性群がHRTを服用していない女性群よりも一般的に健康な人が多かったという事実が原因でした。この差はHRTによるものではありませんでした。似たようなもの同士が比較されていることを保証できない研究は、何万人もの人に害を及ぼす可能性があります。

このHRTの例で示されているように、似たようなもの同士を比較する最も良い方法は、治療開始前に比較群を準備することです。各群は、既にわかっている因子や測定で得られる因子、つまり年齢や病気の重症度だけでなく、病気の回復に影響を与える可能性のある食事、職業、その他の社会的因子、病気や提案された治療法への不安など、測定されない因子においても、同等の患者で構成されている必要があります。治療開始後に比較群を準備すると「比較群が同等である」と確信するのは非常に困難で、ほぼ不可能でしょう。

そうなると、治療効果の違いは、比較対象の治療法の効果の違いなのか、比較群の患者群の違いなのかどちらを反映しているかが、重要な問題となります。
参加者を偏りなく異なる治療法へ割り付ける

1854年、軍の孤児院を担当していた軍医であるThomas Graham Balfour氏は、似たようなもの同士が比較されるように治療群を作る方法を明らかにしました。Balfourは、選択による偏りを避ける」と自ら表現したように、ベラドンナを処方する群と処方しない群に、子どもを交互に割り付けました。治療法の公正な検証において、交互割り付け法を用いるか、もしくは他の偏りない方法で比較群を構成することは、非常に重要な点です。このことにより、既知およびすでに測定された重要な因子についてだけでなく、まだ測定されていない病気からの回復に影響を与える可能性のある因子についても、統計的調整を行うことが不可能な場合であっても、比較群が同等になりやすくなります。

異なる治療法に公正に（偏りなく）割り付けをするには、医師と患者が次の割り付けがどうなるかを確実に知るまたは予測することができなくすることが重要です。医師や患者に割り付けが知られてしまうと、意識的または無意識的に、特定の治療法を選びたくなる可能性があります。例えば、臨床試験で、次に参加する患者がプラセボ（偽薬）群に割り付けられる予定であることを医師が知っていると、重症の患者が試験に参加するのを辞めさせたり、病状の軽い患者を待ったりかもしれません。そのため、偏りのない割り付けスケジュールが作成されていても、患者の試験への参加非参加の決定権のある者が、予定されている次回の割り付けがどの群であるか分からないようにしておくこと、偏りのない治療群への割り付けが行えません。このように、次にどの治療群に割り付けられるかを知らないようにすれば、偏りのない割り付けスケジュールから外そうとするのは起こり得ません。

割り付けを分からなくするため、通常は単純な交互の割り付けよりも予測しにくい割り付けスケジュールを作成し（例えば、乱数に基づいてランダムに）、スケジュールを隠します。割り付けスケジュールを隠すためにいくつかの方法が使用されています。例えば、ランダム割り付けは、研究への参加資格があることが確認された患者を、遠隔で（電話またはコンピューターによって）割り付けることができます。もうひとつの方法は、割り付けを入れた一連の番号付き封筒を使用することです。患者が調べに参加可能となったとき、一連の封筒のうちの次の封筒が開かれ、割り付けの内容が明らかされます。この仕組みを利用すれば、封筒は透けていなくてもならず、医師は封筒をライトに当てて内部を透かして見て「不正行為」をすることはできません。このアプローチは、今日、治療法の公正な検証の重要な条件として認識されています。治療法を割り付けるために乱数を使用する研究は、「ランダム化試験」と呼ばれています（第3章p24の囲み部分を参照）。
試験での割り付けをわからなくするため電話によるランダム化を用いる

治療の比較に偏りのない（ランダム化）割り付けを用いる方法

治療の比較にはランダム化割り付け方法をさまざまな形で用いることができます。例えば、同一患者に対して異なる時間にランダムな順序で行われる別々の治療を比較するために用いることができる、いわゆる「ランダム化クロスオーバー試験」があります。例えば、乾いた咳が続く患者に対して吸入薬の効果を評価する場合、試験は数カ月続くよう設計されることがあります。患者は、薬剤が入った吸入器をランダムに選択した数週間の間使用し、別の数週間に薬剤が入っていない同じ外観の吸入器を使用します。このように個々の患者に研究結果を合わせることができれば、確かに望ましいことですが、このようなクロスオーバー試験を容易に行うことができない場合も少なくありません。例えば、この方法では、外科手術や交通事故による重度の出血などの「1回限り」の急性症状に対する治療は比較することができません。

ランダム化割り付けによる比較は、同一患者において対象部位が異なる治療を行う場合にも用いることができます。湿疹や乾癬などの皮膚疾患の場合には、皮膚患部をランダムに選択し、薬剤を含有する軟膏で治療すべき患部と、有効成分を含有しない軟膏で治療すべき患部を決定することができます。あるいは、両眼の疾患を治療する場合、治療を行う眼をランダムに選択し、未治療の眼と比較することが可能です。

他方、各集団またはグループ一例えば、プライマリケアを行う数多くの診療所や病院の各施設に通院している患者全員ごとに異なる治療が行われる際に、これらを比較するためにランダム割り付けが用いられることもあります。これらの比較は、「クラスター（また
はグループ）ランダム化比較試験」と呼ばれています。例えば、メキシコで一般的な健康保険プログラムの影響を評価するために、研究者らは医療施設集約区域の 74 組（合計 7 州の 118,000 世帯に相当する集団）をマッチングし、それぞれ一致したペアの中で、一方をこの保険プログラムの適用となるようランダムに割り付けました 6。とはいえ、ランダム割り付けは、どの患者がどの治療を受けるかを決定するために用いることがはるかに多いです。

ランダム化割り付けを行うためのいろいろな単位

治療が比較される全員の通過を観察する

似たようなもの同士を比較する公正な試験が確実に行われるよう比較対照群を設定した後は、一部の患者の通過を無視した結果生じてしまうかもしれない偏りを持ち込んでしまうことは避けるべきです。可能な限り、割り付けられた全患者に対して、実際に受けた治療（ある場合）にかかわらず、通過を観察し、割り付けられた群の結果に関する主要解析に含まれなければなりません。これは、intention-to-treat（意図した治療による）解析と呼ばれていています。これが行われなければ、似たようなもの同士を比較する公正な試験とは言えません。
一見、割り付けられた治療を受けていない患者を割り付けられた群通りに比較することは、非合理的に見えるかもしれませんが、この原則を無視すれば、試験に不公正が生じ、結果に誤解を招く恐れがあります。例えば、脳に血液を供給する血管の一部に閉塞を有し、浮動性めまいが起こる患者では、脳卒中の発症リスクが平均より高くなります。研究者らは、これらの患者に対する血栓除去術が、その後の脳卒中を減少させるかどうかを検討する試験を行いました。試験では、手術を耐えられたか否かにかかわらず、手術を受ける群に割り付けられたすべての患者を、手術を受けない群に割り付けられたすべての患者と適切に比較しました。もし、手術直後に生じる影響に耐えられた患者のみを対象に、脳卒中の頻度を記録していたのであれば、手術自体が脳卒中や死亡を引き起こす可能性があるという重要な事実が見落とされていたでしょうし、他の条件が同じであれば、手術を受けた群のうち手術に耐えられた患者で脳卒中の頻度が低下します。この試験は、手術の影響という点において不公正な試験となっていたでしょうし、こうした影響によるリスクは評価に含めなければならなりません。

この図では、2群の手術および治療の結果は実際に等しくなっていますが、もし、手術群に割り付けられた患者のうち2人が術前に死亡し、その後検討から除外されれば、2群の比較に偏りが生じます。これにより、一見すると手術を行った方がよい結果となります。
割り付けられた治療と乖離が生じた場合の取扱い

この章ですでに説明したように、治療法を公正に検討するには、研究を慎重に計画する必要があることを理解していただけたと思います。こうした計画を立てる文書は研究計画（研究実施計画書）と呼ばれてます。しかし、実際に患者が受けた治療が割り付けられた治療と異なるなど、完璧な計画が意図した通りに進まない場合があります。例えば、患者が意図された治療法を受けることができない、医療用品・機器や人員の不足により治療法のうち1つが提供できないといったことが考えられます。こうした相違が見つかった場合は、その影響を考慮して慎重に取り扱わなければなりません。

1970年代から1980年代にかけて、小児の白血病で最も多い急性リンパ芽球性白血病の治療は目覚ましい進歩を遂げましたが、ところが不思議なことに、米国の小児の治療成績は、全く同じ薬物療法を受けていた英国の同じ病の小児の治療成績よりもはるかに良かったのです。ある英国の統計者が米国カリフォルニアの小児がんセンターを訪問した際、その鋭い洞察力で、米国の白血病小児に対する化学療法が英国よりもはるかに「積極的」に行われていることに気づきました。治療には副作用（嘔気、感染、貧血、脱毛など）があり、これらの副作用が特に厄介な場合、米国と違い英国では、医師や看護師が処方する治療を減らすか、または一時的に中止する傾向がありました。この「より穏やかなアプローチ」により治療の効果が減り、英国と米国における治療の成功率に差が生まれたのではないかと考えられます。

患者が割り付けられた治療を最後まで受けられるよう援助する

治療比較中に、もともと割り付けられた治療と実際に受けた治療に違いがあると、治療の試験の解釈を複雑にする可能性があります。試験参加者は医学的に必要な治療を受けられないことがあってはなりません。したがって、有益な効果が期待されるが未だ証明されていない新たな治療法を公正な試験において研究する場合、研究に参加する患者は確立された有効な治療を受けられるようにしなければなりません。

もし、研究において誰に何が行われているかがわかられば、いくつかのバイアス（偏り）が生じる可能性があります。1つは、「新しい」治療法に割り付けられた人々は運がいいと患者や医師が感じることで、無意識のうちにこれらの治療の利益が誇張される可能性があります。その一方で、これまでの「古い」治療法に割り当てられた人々が運が悪いと感じれば、どんなに良い結果が出ようとも、過小評価されることにつながります。どの治療法が患者に割り当てられているかがわからると、医師は古い治療法を割り当てられた患者に対して、特別な治療やケアを行うこともあります。まるで新しい治療法を受けていないことを補うかのようなのですが、これらはまだ科学的にどちらが良いか証明されていない治療法です。このような追加治療ある比較対照群の患者のみに対して行うことは、新しい治療の

64
評価を複雑にし、比較の公正性を損ね、誤った結果を導く危険性があります。意図された治療と実際の治療との比較において違いを減らす方法の一つに、新しい治療法と古い治療法の見た目や味、においが同じになるようにすることがあります。これは、有益だとは期待される治療法を、見た目やにおいから「本物の」治療法だと感じられるよう作られた有効成分を含まない治療法（擬似治療またはプラセボ）と比べる際に行われる方法です。これは「盲検化」や「マスキング」と呼ばれます。この「盲検化」が実現できれば（実現できない場合は多い）、2つの比較対照群の患者の唯一の違いは、割り付けられた新しい治療であるか、有効成分を含まない治療であるかです。同様に、患者をケアする医療従事者は、患者が新しい治療を受けたかどうかを知ることがこれまでよりも難しくなります。医師が患者の双方が割り当てられた治療を知られていない試験を、「二重盲検」試験と言います。この結果、2つの比較対照群の患者は同様に、割り当てられた治療法を守ろうとするようになり、患者のケアにあたる医療従事者は、すべての患者を同じ方法で治療しようとするようになります。

治療結果の公正な評価

治療法の比較に擬似治療を用いる理由の一つは、患者と医師が割り当てられた治療法を守る上で有効であるからですが、こうした「盲検化」が治療結果を評価する上でバイアス（偏り）を減らすことがよく知られています。

盲検化には興味深い歴史があります。18世紀にフランス国王ルイ16世は、Anton Mesmer氏の提唱する「動物磁気」（「メソメリズム」とも呼ばれる）が有益な効果をもたらしたとする説に関して、調査を要請しました。王は、その効果が「心の幻想」ではなく、「本当の力」かどうかを知りたかったのです。治療試験では、目隠しをされた人々が動物磁気治療を「受けていた」、または「受けていない」のいずれかを伝えられるというものでしたが、実際には伝えられた内容と逆のことが行われました。試験に参加した人々は、治療を「受けた」と伝えられていた場合にのみ、治療の効果を感じられたと報告したのです。

生存率など一部の治療結果については、死亡を疑う余地はほとんどないため、結果の評価にバイアス（偏り）が生じる可能性はかなり低くなります。ところが、治療結果には患者が体験した痛みや不安などの症状が含まれるべきであり、また含まれることが多いため、結果を評価する際は、ある程度の主観性を必然的に伴います。患者には、比較される治療法のうち1つを好む場合もあります。例えば、患者が治療法を良いと信じているときは、良い徴候に対してより敏感になり、治療に不安があるときは有害な影響を治療によるものだと思わなくなっています。

このようなことはよくあるので、盲検化は公正な試験の特性として望ましいものです。この場合、比較される治療法は同じように見えるものでなければならないません。例えば、ある多発性硬化症の治療試験では、患者が新薬または有効成分を含まない治療のどちらを投与されたかを知られていない医師（すなわち「盲検化された」医師）と、患者が割り付
けられた比較対照群を知られた医師（すなわち、「盲検化されていない」医師）の両者によって、患者全員を評価しました。「盲検化された」医師による評価では、新たな治療法は有用ではないことが示唆されましたが、「盲検化されていない」医師による評価では、新たな治療法が有益であることが示唆されました。この違いは、新たな治療法が有用でなく、治療法の割り付けを知られたことにより、「盲検化されていない」医師が「信じたこと」または「期待したこと」を見るように誘導されたことを意味しています。全体として、治療効果を評価する際の主観的要素が大きければ大きいほど、治療試験の公正性を期するために盲検化を行うことがより望ましくなります。

実際に外科手術を受けたかどうかについて患者を盲検化することさえ可能です。そのような研究の1つが、膝変形性関節症の患者を対象に実施されました。関節炎を起こしている関節を洗い流すという外科的アプローチは、麻酔下で膝上の皮膚を単純に切開し、関節腔を洗い流したように装った場合と比較して、その利点はありませんでした。

例えば、手術と薬物治療を比較する場合や、薬物が特徴的な副作用を有するなど、比較する治療法の割り付けに対して患者や医師を盲検化することが単純に不可能である場合は多くあります。しかし、死因の特定やX線の判定のようなバイアス（偏り）を生じかない評価であっても各患者が受けた治療を知らされていない者が独立して評価できるようにすることで、盲検化は可能です。

予期せぬ治療の副作用を疑い調査する

予期せぬ治療の効果を疑う

医療従事者や患者が、その治療が悪いものであれ良いいものであれ、予期しなかった治療の効果を疑うことはよくあります。製造販売承認取得に必要な治療試験の対象者は、数百人あるいは数千人程度で治療期間はわずか数カ月であり、この段階では比較的短期間で頻度の高い副作用だけが見つかる可能性が高くなります。それにしっかり変わらない発症までにある程度の時間を要する効果は、承認取得前の試験に参加した人よりも幅広い層の患者によって、長期間にわたり広範囲に使用されるようになってはじめて見つかります。

英国、オランダ、スウェーデン、デンマーク、米国をはじめ、臨床医と患者の両方から副作用の疑いの報告を受け、その後正式に調査を行うことができる機関がある国が増えています。こうした報告制度が、薬剤による重大な副作用の特定において特に効果を奏しているとは言えませんが、成功例もあります。例えば、2003年に英国でコレステロール低下薬であるロスバスタチンが発売された当時、なんとなくして、横紋筋融解症と呼ばれる、重篤でまれな予期せぬ筋肉への有害な合併症が報告されることになりました。この疾患では筋肉が急速に破壊され、分解生成物により、重度の腎臓損傷を引き起こすことが考えられます。さらなる調査の結果、本剤を高用量で服用している患者において合併症のリスクが最も高いことがわかりました。
予期せぬ治療の効果を疑い調査する

副作用に関する疑いは、結局は誤ったものであったことがよくあります。したがって、予期せぬ治療の効果が実際にあるかどうかをどのように調べればよいのでしょうか？予期せぬ効果の疑いを確認する、または否定する試験は、期待される治療効果を確認するための研究と同じ原則を遵守しなければなりません。このことは、偏った比較を避け、似たようなもの同士を比較し、十分な事例を検討しなければならないということです。

イエローカードスキーム

サリドマイドの悲劇により、薬剤の承認取得後に起こる問題を追跡する重要性が浮き彫りとなり、1964年にイエローカードスキームが英国で開始された。副作用の可能性に関する報告は英国医薬品庁（MHRA）に送られ、結果が分析される。毎年、MHRAに寄せられる報告は2万件以上にのぼる。当初、報告書の提出は医師のみに限られていたが、その後、看護師、薬剤師、検死官、歯科医、放射線技師、検眼士にも推奨されるようになった。2005年以降は、患者や介護者にも副作用の疑いについて報告することを推奨している。オンライン（www.yellowcard.gov.uk）、郵送または電話での報告が可能となっている。

ある患者は自身の経験を次のようにまとめている。「イエローカードスキームを通じて副作用を報告することで、自分自身を管理できます。忙しい医療従事者が報告するのを待たなくても、自分で直接報告が可能になります。これは患者がケアの中心になるということです。

これは飛躍的な進歩であり、患者のケアへの関わりがここから前進し、向き合えるようになったことを示すものです。」

期待される治療効果と同様に、予期せぬ劇的な影響は、それほど劇的ではない影響よりも見つけやすく、確認が容易です。疑わしい予期しない治療の影響が起こることは通常起こりませんが、高頻度に起こる場合、臨床医と患者の両者が必要かもしれません。19世紀後半、スイスの外科医であった Thodor Kocher 氏は、自身が過去に甲状腺腫の除去手術を行った少女のうち、1人に倦怠感と嗜眠が見られると、一般開業医を通じて知りました。Kocher氏は、この患者と、手術を行った他の元甲状腺腫患者を調べたところ、甲状腺肥大を完全に除去したことで、クレチン症および粘液浮腫が生じたことを発見しました。これらの症状は今では、甲状腺が産生するホルモンの不足が原因でまれに起こる重篤な症状であることがわかりています。妊娠中のサリドマイド（第1章 p4を参照）の使用と四
肢欠損児の出生との相関が著しかったことから、サリドマイドの予期せぬ影響が疑われ、確認されました。このような四肢欠損はこれまでにほとんどなかったのです。

代替療法の相対的な利点の評価を目的に設計されたランダム化試験では、それほど劇的ではない予期せぬ治療の影響が明らかになることがあります。感染予防用に新生児に投与される2種類の抗生物質をランダムに比較した結果、1種類が肝臓からの廃棄物であるビリルビンを体内で処理する過程を妨害することが明らかになりました。比較した抗生物質の1種類を投与された出生児では、この老廃物、ビリルビンが血液中に蓄積されることで脳障害を引き起こしました13。

過去に行われたランダム化試験をさらに解析すると、それほど劇的でない副作用が見つかることがあります。ジエチルスチルベストロール（DES）を投与された妊娠中の女性の一部で、出生児にがんを引き起こすことが明らかになりましたが、その後、他の副作用の可能性も推測されました。こうした副作用は、対照試験に参加した女性の男女の子どもに連絡をとることで明らかになりました。これらの追跡調査により、女性だけでなく男性の生殖器異常や不妊症があることが示されました。最近では、関節炎の新薬であるロフェコキシブ（商品名Vioxx）が心臓発作を引き起こす疑いが発覚した際に、関連するランダム化試験の結果を詳しく検討した結果、ロフェコキシブが実際にこの有害な作用を起こしうることがわかりました（第1章p5-7を参照）14。

ランダム化試験に参加した患者の追跡調査は、明らかに、予期せぬ治療の影響の疑いを検討する上で、似たようなもの同士を比較することを確実にするために非常に望ましい方法です。残念ながら、事前準備がなされていない限り、この方法が行われることはまれです。ランダム化試験の参加者の連絡先を定期的に管理していれば、治療による悪影響の疑いを検討することは、それほど困難なことではありません。参加者は試験後に再び連絡を受け、身体の状態について詳しく尋ねられることもあります。疑われる有害作用が治療の対象となった疾患とは全く異なる領域の疾患であれば、治療による有害作用の疑いについての検討は容易になります15。例えば、Spock博士は、新生児をうつ伏せに寝かせることを推奨しましたが、乳幼児突然死症候群のリスクが平均より高いと考えられる乳児については、この推奨の対象としませんでした（第2章p13-14を参照）。

一方、うつ病に処方された薬剤により、うつ病に伴って起こることがある自殺念慮が増加するという疑いを検討することは、はるかに大きな困難を伴います。疑いのある薬剤とその他のうつ病治療薬をランダムに比較しない限り、薬剤を服用した人と服用していない人々が信頼性の高い比較を行うほど十分に同一性を有していると仮定することは困難です16。
<table>
<thead>
<tr>
<th>キーポイント</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 治療は公正に試験されなければ、有用ではない治療を有用であると判断したり、その逆もまた同様に起こり得るため、治療には公正な検証が求められる。</td>
</tr>
<tr>
<td>• 治療をあらゆる方法で公正に検証する上で比較は最も基本となるものである。</td>
</tr>
<tr>
<td>• 治療同士の比較（または治療しない場合と比較）する際は、「同じように見えるもの同士を比較する」という原則が必要不可欠である。</td>
</tr>
<tr>
<td>• 治療結果を評価する際にはバイアス（偏り）を減らす試みが必要である。</td>
</tr>
</tbody>
</table>
第7章 偶然性を考慮する

偶然性と大数の法則

治療効果に関するエビデンスの信頼性は、バイアス（偏り）の排除（そして、排除できなかったバイアスをどのように処理したか）にかかっています。公正な検証にあるべきこうした特性を達成できなければ、研究結果をどのように分析したところで、時には死亡にさえつながる危険な問題が未解決のまま残ってしまいます（第1章および第2章を参照）。ただし、バイアスを減らす手段をとったとしても偶然性が働き、間違った方向に導かれてしまうこともあります。

コインを繰り返し投げたとき、表だけ、あるいは裏だけが5回以上「続いて出る」のももちろんです珍しくないと、皆さんご存じでしょう。そして、コインを投げる回数が増えるほど、最終的には表と裏が出る回数が同じような数になる可能性が高くなります。

2つの治療法を比較する際、結果の違いは、単にこの偶然性が反映されている場合もあります。例えば治療Aを受けた患者の40％が死亡したのに対し、治療Bを受けた同じような患者の60％が死亡したとします。この2つの治療を、それぞれ10人の患者が受けたときは、表1に示したような結果が予想できます。2つの治療における死亡者数の違いは、「リスク比」として示されます。この例でのリスク比は、0.67になります。

こうした小さな数字をもとに、治療Aが治療Bより優れていると結論するのは適切でしょうか。おそらく違います。一方のグループ内の数人が、もう片方のグループより改善した背景には、偶然という理由が潜んでいる可能性があります。複数の他の小規模患者グループでもこの比較を繰り返したら、単なる偶然によって、それぞれのグループでの死亡者数が逆（6人対4人）になったり、同数（5人対5人）になったり、あるいはそれ以外の比率になるかも知れません。

<table>
<thead>
<tr>
<th></th>
<th>治療A</th>
<th>治療B</th>
<th>リスク比 (A:B=)</th>
</tr>
</thead>
<tbody>
<tr>
<td>死亡者数</td>
<td>4</td>
<td>6</td>
<td>(4/6 =) 0.67</td>
</tr>
<tr>
<td>全体数</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

表1. 治療Aと治療Bの差について、この小規模研究から信頼できる推定が得られるでしょうか。

しかしそれぞれの治療を100人の患者が受け、各グループで先程と全く同じ比率の患者が死亡（40％と60％）したらどうでしょうか（表2）。表1に示した治療Aと治療Bを比較した際に生じた測定差（リスク比）は全く同じ（0.67）ですが、死亡者数が40人対60人の方が、4人対6人に比べて明確な差であり、偶然性が反映された可能性も低いと思われます。治療法を比較する際に、偶然性に惑わされないようにするには、死亡、悪化、改善、同じ
状態のままという転帰をたどる十分な数の患者を含む研究をもとに、結論を導くことです。これはしばしば「大数の法則」と呼ばれます。

<table>
<thead>
<tr>
<th></th>
<th>治療 A</th>
<th>治療 B</th>
<th>リスク比 (A:B=)</th>
</tr>
</thead>
<tbody>
<tr>
<td>死亡者数</td>
<td>40</td>
<td>60</td>
<td>(40:60 =) 0.67</td>
</tr>
<tr>
<td>全体数</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

表2. 治療Aと治療Bの差について、この中規模研究から信頼できる推定が得られるでしょうか。

公正な検証でも偶然の可能性を検査する

治療法の公正な比較検証の結果を解釈する際にも、偶然性が働くことによって、私たちは2種類の間違いを犯してしまう可能性があります。2つの治療法の転帰に本当に差がないのに、差があると誤って結論づけてしまう可能性、あるいは本当に差があるのに、間違って差がないと結論づけてしまう可能性です。観察できる対象の治療転帰の症例数が多いほど、このような間違いを犯してしまう可能性が減ります。

治療法の比較では、その治療を必要とする症状を過去に発症した、あるいはこれから発症する全員を含めることはできないので、断定的にそれぞれの治療の「真の差」を見つけるのは不可能なのです。その代わりに臨床試験では、真の差にできる限り近い推定を出さなければなりません。

推定される差の信頼性は、しばしば「信頼区間（CI）」と表示されます。これは真の差の値が含まれる範囲を示しています。信頼区間という言葉を知らなくても、すでにほとんどの人はこの概念に馴染みがあることでしょう。例えば選挙運動期間に、政党Aが政党Bを10ポイントリードしているという世論調査があったとします。しかし調査報告には、しばしば政党間の差は最小で5ポイント、最大で15ポイントといった注釈がついています。この「信頼区間」は、政党間の真の差が、5ポイントと15ポイントの間に位置している可能性が高いということを示しているのです。世論調査に回答した人の数が多いほど、結果についての不確定要素が小さくなるので、推定される差の信頼区間も狭まります。
政党Aと政党Bの差の95%信頼期間（CI）は、世論調査の回答者数が増えるほど狭くなる。

2つの政党支持者の割合に関して、推定される差を取り巻く不確定要素の度合いを評価できるように、2つの治療法を受けた後に悪化する患者と改善する患者の割合でも、推定される差に関わる不確定要素の度合いを評価することができるのです。そしてここでも、例えば心臓発作後の回復過程で2つの治療法を比べる場合に、治療転帰を観察できる患者の数が多いほど、推定される差の信頼区間は狭くなります。信頼区間は「狭いほど良い」のです。

通常、信頼区間は、その推定範囲内に真の値が入っていることに、どれだけ自信があるかも示されています。例えば「95%信頼区間」というのは、その真の値がこの信頼区間の中に入ると推定することに、95%自信があることを意味しています。これは100回のうち5回の割合（5%）で、「真」の値がその範囲外に位置する確率もあるということなのです。

治療間の「有意な差」とはどのような意味か

これは少し気をつけるべき質問です。というのも「有意な差」には、いくつかの意味があるからです。まず、患者にとって実際に意義のある重要な差という意味にも受け取られます。しかし研究文書の著者が「有意な差」があると表現するときは、しばしば「統計学的に有意」であるということを意味しています。そして「統計学的に有意な差」は、一般的な感覚での「有意義」にはあたらない場合もあります。治療間で、偶然である可能性が非常に低いのが「統計学的に有意な差」であって、実際にはあまり、あるいはほとんど意味がないこともあります。

1日1錠のアスピリンを摂取した何万人もの健康な男性と、アスピリンを摂取しなかった何万人もの健康な男性のランダム化比較試験に関する系統的レビューの例をみてみましょう。このレビューの結果、アスピリンを摂取した人が心臓発作を起こす確率が低く、
差は「統計学的に有意」であることがわかりました。つまりこの差が偶然性によるものだったと言える可能性は低いということです。ただし、それはこの差に実際意味があるとは限りません。健康な男性が心臓発作を起こす率がすでに非常に低いとすれば、薬を飲んでさらにその確率を下げるのは適切ではないかもしれません。特にアスピリンには、例えば出血などいくつかの副作用があり、時には死亡につながることもあります。 系統的レビューから得られたエビデンスをもとにすると、もし1,000人の男性が1日1錠のアスピリンを10年間摂取して、うち5人がその期間に心臓発作を起こすのを回避できても、3人に重篤な出血が起こると推計できるのです。

治療の公正な検証のため十分な数を確保する

治療の比較試験では、1つか2つの施設で試験を行うことで十分な数の参加者を確保することが可能な場合があります。しかし、治療が死亡といったまれな転帰に与える影響を評価するためには、通常、多くの国の多数の施設で患者を募集し、研究に参加してもらって、信頼できるエビデンスを得る必要があります。例えば13カ国から1万人の患者が参加したことにより、重篤な脳損傷がある患者へのステロイド薬の投与は、死亡を引き起こすことがわかりました。これは30年間続いてきた治療でした2。同じ研究チームによる別の公正な検証では、40カ国から2万人の患者の参加を得て、トラネキサム酸と呼ばれる安価な薬剤が外傷後の出血死を減らすことが示されました3。これらの試験は、偶然性が働くことによる不確実性およびバイアスを減らすよう設計された非常に公正な検証であり、世界中のヘルスケアに大きく関連する質の高いエビデンスを提供しました。実際、英国医師会雑誌（BMJ）が実施した投票調査では、トラネキサム酸のランダム化比較試験が、2010年の最重要試験に選ばれました。
下図は、受賞チームから提供されたデータに基づいたものです。偶然の働きで間違った結果に導かれるリスクを下げるためには、できる限り多くの情報をもとに、治療効果を推定することがいかに重要かを示しています。一番下のひし形のマークは、トラネキサム酸の臨床試験の全体の結果で、同薬が出血死をほぼ30％（リスク比は0.7を若干上回る）下げたことを示しています。大陸Aの施設では、効果があまり顕著ではない（これは統計学的に有意でなく、真の効果を過小評価している可能性が高い）という推定を示しています。また「その他の大陸区分の施設では、より顕著な効果があった（過大評価の可能性が高い）という推定を示していますが、全体の結果がこの薬剤の効果について最も信頼できる推定です。

出
血 死

リスク比（95％信頼区間）

大陸A
大陸B
大陸C
その他の大陸

全体

0.5 0.6 0.7 0.8 0.9 1.0 1.1
治療結果が改善
治療結果が悪化

参加者全体および大陸ごとに示した重篤な出血がある外傷患者の死亡におけるトラネキサム酸の影響

同じように、国際的な試験で多くの施設から得られたデータを組み合わせ、「メタアナリシス」と呼ばれる方法で、類似の複数の試験結果を統計的に結びつけ（第8章も参照）、偶然性を低減することができます。メタアナリシスは長年にわたり統計家が開発してきた手法ですが、1970年代から米国の社会科学者たちが初めて利用してから、医療研究者の間でも頻繁に活用されるようになりました。20世紀の終わりまでには、メタアナリシスが治療の正しい検査をする上で重要な要素として広く受け入れられるようになりました。

例えば、未熟児の場合「血中酸素の値がいくつだと重大な障害が発生することなく最も生存の可能性が高くなるか」という60年間答えの出ていない問いに取り組むため、5カ国で別々の財源および実施者による5つの試験が行われました。血中酸素レベルが高すぎると視力を失う可能性があり、低すぎると死亡あるいは脳性麻痺を起こす可能性があります。
こうした虚弱な新生児では、異なる酸素レベルによって生まれる差は小さく、それを検知するには多数の試験参加者が必要です。そのため5つの各研究チームの責任者たちは、1つの研究結果から個別に導き出される推定よりも信頼度の高い推定を提供するために、それぞれの研究から得られたエビデンスを統合することに合意したのです。4

キーポイント

- 利用できるエビデンスの質と量における信頼性を検査する際には、「偶然性」を考慮する必要がある。
第8章 信頼できる関連エビデンスをすべてレビューすること

1つの試験で果たして十分か？

端的に答えると1つの試験で十分なことは「めったにありません」。1つの公正な治療法の比較から、治療法の選択に関する決定の基準にするのに十分信頼性のあるエビデンスが得られることはめったにないのです。しかし、時には1つの試験から信頼できるエビデンスが得られることがあります。そのようなまれな試験の例として、心臓発作時にアスピリンを服用すると早期死亡のリスクが低下することを示した試験1や、急性外傷性脳損傷の患者にステロイドを投与すると致死的であることを明らかにした試験（下記および第7章p73-74を参照）があげられます。また、早産児の脳性麻痺を防ぐことが知られている唯一の薬物はカフェインですが、それを特定した試験も同様です（第5章p47-48を参照）。しかし通常、単一の試験は同じような課題を扱う複数の試験のうちの1つにすぎません。したがって、個々の試験から導き出されたエビデンスは、類似する他の試験のエビデンスと併せて評価すべきです。

公正な試験の先駆者である英国の統計学者Austin Bradford Hill氏は1960年代に、試験の報告は次の4つの質問に答えるものでなければならないと述べています。

- なぜその試験を行ったか？
- 何を行ったか？
- 何を発見したか？
- 結局のところ、試験は何を意味しているか？

なぜその試験を行ったか？

「臨床研究の科学的および倫理的妥当性のためには、答えを必要とする課題を扱うこと、意味のある答えが得られるようにデザインすること以上に基本的な原則はほとんどない。この2つの原則の前提は、関連する先行研究が適切に洗い出されていることである。（中略）既存のエビデンスの把握が不十分であると、研究の参加者から提供してもらう情報が必要なものであり将来他の人の役に立つという、参加者との暗黙の倫理的な契約を破ることになる」。

この4つの質問は今日でも重要な意味を持ちますが、これを検証することは不十分であり、すっかり見過ごされたりします。最後の質問「試験は何を意味するか？」への答えは治療の決定や将来の研究に影響を及ぼす可能性があるため、特に重要です。

例えば、早産になりそうな女性にステロイド薬を短期間投与するという費用のかからない治療法があります。この治療の最初の公正な試験は1972年に報告されており、母親にステロイドを投与したところ、新生児の死亡率が低下したということです。その後の10年間に複数の試験が行われましたが、規模が小さいうえに個々の結果は紛らわしいものでした。いずれの試験も類似の先行試験を系統的に検討していなかったからです。もし検討していただならば、ステロイドの有益な作用を裏付けるとても強力なエビデンスが浮かび上がっていたでしょう。実際に系統的な検討がなされたのは1989年のことで、それまでの間、この治療にそれほど効果があることがほとんどの産科医、助産婦、小児科医、新生児看護師に認識されていませんでした。その結果、何万人もの未熟児が苦しんで、そして不幸にも命を落としたのです。

「試験は何を意味しているか？」という質問に答えるには、ある公正な治療比較のエビデンスを、類似する公正な治療比較のエビデンスと並べて解釈しなければなりません。

研究から得た情報を統合する

百年以上前に、英国学術協会長のRayleigh卿は、新たな研究の結果を関連エビデンスの文脈に置く必要性について論評した。

「もし科学が、巻で考えられているように、労力をかけて事実を積み重ねるだけのものにすぎなければ、すぐに行き詰まり、それ自体の重さで潰れてしまうであろう。（中略）そこには、新たな知見を受け入れる過程と、既存の知見を消化し同化する過程の2つが並行してはたらく。この両方の必要性を受け入れ、相対的な重要性に関する議論を進めることができる。（中略）発見と説明を同時に進め、新たな事実を提示するだけでなく、既知の事実との関連を指摘することは、最大級の称讃に値するが、残念なことに必ずしも受け入れられていない。」

Rayleigh, Lord.In:Report of the fifty-fourth meeting of the British Association for the Advancement of Science; held at Montreal in August and September 1884.London:John Murray, 1884; pp3-23.

新たな試験結果を報告するときに、関連するエビデンスを考慮した解釈（系統的レビュー）を行わないと、有用な治療と有害な治療を見分けるのが遅れ、不必要的試験の実施につながります。
信頼できる関連エビデンスをすべて系統的にレビューする

1つの試験の結果は信頼できる他の関連エビデンスと並べてレビューすべきであると言うのは簡単ですが、これはさまざまな意味で難しい問題です。レビューが重要するのは人々の判断の拠り所にするためであり、系統的に行わないと人々の判断を誤らせてしまいます。

系統的レビューの重要性

「系統的レビューとメタアナリシスは、医療においてますます重要になっている。臨床医は自分の専門分野の最新情報を取り入れるためにそれらを利用し、臨床診療ガイドラインを作成する出発点として利用することも多い。研究助成（資金援助）を行う団体は、研究を進める妥当性を確認するために系統的レビューを要求することがあり、また、一部の医療専門誌はこの方向に進んでいる。研究がみなそうであるように系統的レビューの価値もあるが、何を行ったか、何を発見したかと、報告の明確さによって決まる。また、他の出版物と同様に、系統的レビューの報告の質にもばらつきがあり、レビューの長所と短所を評価する読み手の能力を必要とする。

系統的レビューによって、治療に関する同じような課題を扱っているように見えても、異なる結論に達することがあります。その原因は、取り組む課題が微妙に異なることや、研究者によって用いる手法が異なるためです。また、研究者が都合のよい解釈を結論に持ち込む場合もあります。そこで重要となるのは、自分の関心をもつ治療の課題に似た課題を扱うレビューを扱っていること、バイアスの影響や偶然の働きを上手く減らすように準備されていること、示されたエビデンスを反映するためにして正当な結論にたどり着いていることです。

系統的レビューでバイアスを低減する

バイアスは、個々の治療試験の結果を歪めて誤った結論を導き出すことがありますが、同様にエビデンスのレビュー結果を歪める可能性があります。

例えば、研究者が自己たちの主張に沿った治療を支持するような試験を「都合良く選ぶ」こともできるのです。このような問題を回避するには、個々の試験と同様に、系統的レビューの計画も研究計画として作るべきです。この研究計画には、レビューの準備段階で、バイアスと偶然性の影響を低減するためにどのような方法をとるかを明示する必要があります。
これには、レビューで取り扱う治療の課題を具体的に示すこと、試験をレビューに組み入れるための適格基準、適格な試験の候補を見つける方法、組み入れる試験の選択とデータ解析の際にバイアスを最小限にするための手順などがあります。

系統的レビューの関連エビデンスをすべて洗い出す

系統的レビューの関連エビデンスを言語や報告形式を問わずすべて洗い出すことは常に困難を伴います。特に、関連エビデンスの中には発表されていないものもあります。過小報告の原因は主に、結果が期待外れだった場合に研究者が報告を書き上げないか、出版社に投稿しないことです。また、製薬企業は自社製品に都合の悪い試験を公表しません。

学術誌にも、結果が十分に「刺激的」でないと判断されて投稿論文が却下されるというバイアスの傾向がみられます。バイアスによる過小報告は非科学的、非倫理的であり、今ではこれが重大な問題であると周知されています。特に、治療を選択しようとしている人に誤解を与える可能性があります。それは、「期待外れの」あるいは「否定的」な結果が出た試験ほど報告が少なく、刺激的な結果の出た試験ほど「過剰報告」になるためです。

過小報告の程度は驚くほどで、全臨床試験の実に半数以上が正しく報告されていないのです。このような過小報告はバイアスであり、大規模試験にも小規模試験にも当てはまります。この問題に取り組むためにとられた手段は、試験を開始するときに登録する体制を確立することと、研究者に研究計画を公開するよう促すことでした。

バイアスによる過小報告は人命に関わることさえあります。1993年に英国の一部の研究者が、13年前に実施した臨床試験の結果を報告する決意をしたのは称讃に値することさえあります。

マーケティングに基づく医療

「製薬業界の内部資料は、公表されたエビデンスの根拠が製品に関する裏付けデータを正確に表していないことを示唆している。製薬業界とメディカルプロモーション企業は、医学文献への掲載は主に市場での関心を引くためであると述べている。否定的なデータの抑制と都合のよい解釈、論文の代作[第10章p102-103参照]は、製品の販売に最大となるよう医学雑誌での発表を支援する手段として出現した。それと同時に、医師に対する病気の不適切な宣伝や市場の細分化も効率的に利益を最大化するために利用されている。エビデンスに基づく医療は崇高な理想であるが、マーケティングに基づく医療が現状の姿である。」

この試験は、心臓発作をきたした患者を対象に心調律異常を軽減する新規の薬物に関するものです。この薬物を服用した患者のうち9人が死亡したのに対し、対照群で死亡したのは1人のみでした。著者らはこのように書いています。「1980年にこの試験を行ったとき、従来薬群での死亡率の上昇は偶然の働きだと考えていた。当該薬物（ロルカイニド）の開発は商業的な理由で中止されたため、本試験が発表されることはなかった。これは現在では『発表バイアス』の典型的な事例となっている。ここに記載した結果は、（中略）その後起こった問題の早期の警告になっていたかもしれない」。

系统的レビューで偶然の動きを減らす

第7章p74で、類似する別々の試験のデータを統合する「メタアナリシス」と呼ばれる手法によって、偶然性をどのように減らせるかについて説明しました。例としてあげたのは、5つの国で計画され、別々に資金提供を受けた5つの試験でした。早産児が重大な身体障害なく生存できる可能性を最大にするために、どの程度の血中酸素濃度が必要かという、60年後の難問に対処するものでした。この例では、試験がまだ終わっておらず結果が公開される前にこの手順がいかに計画されたかが示されましたが、一連の類似する試験が完了した後にも同じ手順を使用できます。

例えば、1974年にスウェーデンの医師が、乳がん手術に放射線療法を追加する場合としない場合の結果を比較する試験の系統的レビューを実施しました。この医師は、検討対象とした全試験で放射線療法を受けた群の女性のほうが死亡率が高かったことに気づきました。メタアナリシスを用いて、このエビデンスを統計学的に統合すると、この死亡率の高さは偶然の動きである可能性は低いことが明らかになりました。その後、個々の患者のエビデンスに基づいてさらに詳細な解析を行い、この時代の放射線療法が死亡率を上昇させていたことが確認されました。この発見によって、安全な治療が確立されたのです。

系統的レビューの利益相反および情報の適格性を認識する

もしレビューを行う立場の人（査読者）が、レビューやその解釈に影響を及ぼすような利益相反を有していたらどうでしょうか？査読者がその新しい治療法の開発元企業からお金を受取っていたとしたら。湿疹に対する月見草油の効果についてエビデンスを検証した例では、査読者と製造会社に繋がりがあった場合、そのような商業上の関係のない査読者に比べ、はるかにその治療に対して有利な結論を述べました（第2章p15-17を参照）。しかし、商業上の利益だけが査読のバイアスに繋がるわけではありません。研究者、医療従事者、患者も同様に、私たちはみな、先入観のために同様のことをやりかねません。
残念ながら、利益相反を有する人は、ある治療法を実際よりもよく見せるためにバイアスを利用することがあります（10章も参照）。また、医療上の理由のみにかかわらず、実際に存在するエビデンスを意図的に無視する研究者もいます。彼らは、特定の治療研究を自らの研究結果で有利に見せようと設計、分析、または報告するのです。これは、1990年代、抗うつ薬Seroxat（パロキセチン）において起こったことです。実際に、この薬を若者に投与することにより若年患者の一部でうつ病を苦に自殺を考える症例が増加したと示唆されましたが、同薬の製造会社はその重大なエビデンスを隠蔽したのです。

過剰報告も問題です。 「サラミ・スライシング」と呼ばれる現象は、研究者が、単一の試験から結果をいくつか抽出し（1つのサラミから同じスライスを切り分けるように）、報告がそれぞれ独立した研究の結果ではないことを明示せずに複数の研究報告として提出することです。こうして、「肯定的な結果」を示した単一の試験が、いくつかのジャーナルに異なる論文として発表され、バイアスを誘導します。ここでも、すべての研究に固有の識別子を使用して臨床試験を登録すれば、このような事態を誘導するのを減らすことができます。

信頼性が高く、関連性あるすべてのエビデンスでの評価がなされていないとどうなるでしょうか。

治療法の公正な検証のためには、信頼性の高いすべての関連あるエビデンスを系統的にレビューすること、そしてすでにわかっていることはなかったにかぎらず、動物または他の研究室実験であるか、よくある健康なボランティアによる新治療法の検証であるのか、または患者を対象とした過去の研究の報告であるのか、などを確認する必要があります。このステップが省略されたり、ずさんに行われるとすると、深刻な結果を招くことになります。一般の患者や研究参加者らが苦しんだり、時には不必要に死亡したりする可能性もあり、医療と研究の両方の貴重な資源が無駄に費やされることになります。

回避可能な患者の不利益

30年間にわたって教科書に掲載されていた心臓発作時推奨治療と、同時に報告された治療を公正に検証した結果の系統的レビューが行われていれば考慮されていただろうエビデンスとの比較が行われました。
科学は累積的なものなので、科学者は科学的に証拠を蓄積することをしない。

「25年も前から、学術研究者のあいだでは、『累積メタアナリシス』について語られてきた。それは、ある介入に関するメタアナリシスを定期的に実施することであり、1つの臨床試験が完了することにデータを差し代えて最新の結果を示す方法である。それにより、結果がどこに向かっているのかを把握することができる。また最も有用なことは、次の臨床試験が発表されれば累積的な統計的有意性がすぐに明らかになることで、これ以上、不要な研究で人の命を危険に曝さずに済む」。

この比較により、その教科書の推奨事項に多々間違いがあったことが判明しました。このことは、著者らが関連するエビデンスすべてを系統的にレビューしていなかったために起こりました。そしてこの一件が与えた影響は悲惨なものでした。一部の症例では、心臓発作患者に救命救急処置（例えば、血栓溶解薬）も行われず、また別の症例では、死亡に至らしめる危険があると公正な検証により示されている治療（例えば、心臓発作発症患者の心拍数異常を減らす薬の使用など）が、その後何年も続けられていました（第2章p12を参照）。

新たなエビデンスが創出されたにもかかわらず、その系統的レビューの研究結果を実地医療に反映しなかった場合、患者に不利益をもたらし続けることになります。冷蔵保存や交差適合試験を必要としない血液代替物は、出血の治療にとって本物の血液にとって代わる可能性のある、明らかに魅力的な療法です。しかし残念ながら、これらの製品は心臓発作および死亡のリスクを増加させます。さらには、1990年代後半以降発表のランダム比較試験を系統的にレビューしたところ、その血液代替物の危険性は数年前に認識できた、もしくはすべきであったことが明らかになりました。

回避可能な研究参加者の不利益

信頼性の高い、関連あるすべてのエビデンスの評価をしなければ、研究参加者に回避することが出来たかもしれない不利益をこうむらせることになります。研究者らは、未だに、有効と判断している治療であっても、その治療を行わない群を含めた試験を利用し、そのような研究を依頼しています。例えば、腸の手術を受けている患者に抗菌薬を投与すれば、手術の合併症による死亡率が低下することが確かなエビデンスで示されました。しかし、研究者らはその後も比較試験の対照群として参加者の半分を割り付け、抗菌薬を与えない比較研究を継続していました。研究者が、過去に結果が出ている事実を系統的に見直すことができなかったために、既知の有益な治療法があるにもかかわらず、研究参加者の半数にその治療を施行しなかったのです。この重大な過ちは、研究資金を供給し
た資金調達機関や、研究計画を見直し研究者に指摘すべきであった倫理委員会によって、明らかに見過ごされたのだと言わざるを得ません。

これから行なおうとする治療の有効性についてすでにわかっていることを研究者が系統的に評価しない場合、リスクにさらされることは治療を必要とする患者だけではありません。健康なボランティアにも被害を与える可能性があります。基本的に治療法を検証する場合、はじめに実施される第1相試験には、非常に少数の健康なボランティアが参加します。2006年、ウェストロンドンにある民間研究施設の若い男性ボランティア6人に、これまで人に用いられなかった薬物を注射しました。そして彼ら全員が生命を脅かす合併症を被ったのです。1人は指と足指を失い、長期にわたり健康が損なわれました。同様の薬物に対する重篤な副作用の報告が公表されていれば14、そして研究者がその薬物の効果について、すでに公表されている研究結果の系統的なレビューを行っていれば、この悲劇はおそらく避けることができた13でしょう15。研究者らははじめから試験を計画しなかったでしょう。もしくは実施したとしても治験薬を一斉に投与するのではなく個別に1回ずつ投与したことでしょ。また、健康なボランティアに対し、副作用の危険性を話すことができたでしょう16。

医療と研究における資源の無駄遣い

信頼できる研究のエビデンスを系統的にレビューしなければ、患者や研究参加者に被害を与えないまでも不利益を生じるのは確実です。
最初に過去のエビデンスを調べることで死亡を防ぐことができたか？

「回避できたかもしれない悲観的状況を招いた例として、ジョンズ・ホプキンス大学のぜんそくの研究がある。2001年6月に24歳の健康なボランティアの女性Ellen Rocheさんが死亡した事件である。彼女は指示されたように化学物質を吸引した結果、肺および腎臓機能不全の進行により息を引き取った。彼女の死亡後、実験を行った研究者とそれを承認した倫理委員会は、Rocheさんに吸入させる化学物質のヘキサメトニウムの危険性についての多くの手がかりを見落としていたことがわかった。この件がさらに悔やまれるのは、過去に出版された文献を調べればその化学物質の危険性のエビデンスを容易に見つけることができたのである。ボルチモア・サン紙は、主任研究者であるAlkis Togias医師がこの薬の副作用を研究するため『誠実に努力』したものの、彼の検索は明らかに1966年以降の文献のみ検索可能なPubMedなどの数限られたリソースを中心に調査していたと結論した。しかしながら実際には、1950年代以前の出版物で、かつその後も引用されている文献に、ヘキサメトニウムに関連する肺損傷についての警告がなされていたのである」。

that were more likely to be relevant to identifying improvements

なぜなら、医療および医学研究における資源の無駄になります。例えば、1980年代および1990年代に、合計8,000人以上の患者が、脳卒中の新薬候補を検証するいくつかの試験に参加しました。オランダの研究者たちは、同薬を研究した結果を洗い出し、システム的にレビューアしましたが、有益な効果を見出すことができませんでした（第10章 p121を参照）。その後、彼らは動物で以前に行われた同薬の実験結果を再検討しましたが、やはり、有益な効果は認められませんでした。動物実験を実施した研究者および臨床試験を実施した臨床医が動物実験の結果のシステム的レビューを行っていたならば、何千人もの患者が臨床試験に参加せずに済んだでしょう。確かに、脳卒中の治療のため、また同疾患のより良い治療の特定につながる研究のためにもっと有効に資源を活用できただろうかもしれないのです。そして、これは全く特別な例ではありません。

新たな研究報告は、システム的レビューで始まり、システム的レビューで終わる

ステロイド投与の急性脳外傷に対する有効性を評価する研究報告では、Bradford Hillの法則（4つの質問）すべてに回答するためのやり方が示されています。研究者たちは、同治療の多様な臨床応用のエビデンスを含め、既存のすべてのエビデンスをシステム的にレビューした結果、現在一般的に使われている治療の有効性について重大な不確実性がみられたため、この研究に着手したと説明しています。彼らは、レビュー開始時にはすでに研究計画の登録および発表を完了していたと報告しました。
医学雑誌「The Lancet」の編集者による、著者への研究成果を文脈に入れる

系統的レビュー

この部分では著者がすべてのエビデンスをどのように検索したかの説明が含まれていなければなりません。また著者らはどのようにエビデンスを選択し、どのようにそれらを組み込んだかなど、そのエビデンスの質の評価方法についても記載すること。

解釈

著者、彼らの研究が過去の研究に加えられることにより、エビデンス全体に対して何が追加されるかをここに述べるべきである。

「8月1日以降提出されるすべての研究報告において、ランダム化比較研究であろうとなかろうと（中略）『考察』にて、その結果をエビデンス全体の背景の中に組み込むよう求めること」

彼らは、必要な数の患者を試験に組み入れることにより、バイアスを最小限に抑えて偶然の可能性を十分にコントロールし、重篤な脳損傷を有する患者に投与されていたステロイドが、実は患者が死亡する確率を高めていたことが自分たちの研究で示されたと発表しました。

最後ですが忘れてはならないのは、彼らは、現在一般的に使われている治療により何千もも人が命を落とすかもしれないような行動を起こすべき、そのために必要なすべてのエビデンスを読者に提供したことです。つまり、以前の研究の数々を精査したこれまでの系統的レビューを更新し、自らの研究で見出した新たなエビデンスをそこに組み込んだのです。
<table>
<thead>
<tr>
<th>キーポイント</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 単一の研究で、医療の治療選択を導くのに十分なエビデンスが得られることはほとんどない。</td>
</tr>
<tr>
<td>• 新しい治療の相対的メリットの評価は、関連性があり信頼性の高いすべてのエビデンスの系統的レビューに基づいて行われるべきである。</td>
</tr>
<tr>
<td>• 治療を検証した個々の研究同様、系統的レビューではバイアスや偶然性による誤りを導く影響を減らすためにさまざまな措置を講じる必要がある。</td>
</tr>
<tr>
<td>• 系統的レビューの結果を考慮しなかったことにより、結果的に患者に回避可能な不利益を被らせ、医療と研究の資源を無駄にした。</td>
</tr>
</tbody>
</table>
第9章 臨床試験への規制はどこまで必要か

治療法の評価が厳密に行われず、治療効果がはっきりしないという状態が無駄に続くことがあまりにも多いことはすでにご存知でしょう。逆に第5章で述べたように、医療従事者が患者と連携して治療効果についてもっと理解しようとしても、それが意図的に阻止されることもあります。研究と治療の間に人為的な溝をつくり、こうした問題を引き起こしているのは、奇妙に思えるかもしれません。しかし、すでに述べたように、これまで評価が行われていない治療法や、評価の乏しい治療法が、研究以外の場で用いられることにより、患者は危険にさらされる可能性があります。

誰が医療研究があなたの健康に悪いと言うのか

「医学研究倫理に関する議論では、大抵の場合、研究をどう規制すべきかという問題が取り上げられる。実際、医学研究は色々なやり方で、診療行為よりもはるかに厳しく規制されている。熟読すべきガイドラインが数え切れないほどあり、そのために、医学研究は喫煙のごとく人体に悪影響でもあるのかと思われても仕方がないほどだ」

なぜ、研究は非常にリスクが高く、特別な規制が必要であると考えられているのに対して、研究よりもはるかに多くの患者に影響を与える日常的な診療行為は、そう見なされないのでしょうか。過去に研究者たちが目的を達成するための手段として、患者を不当に利用した実験を行うなど、不正行為があった事実を無視することはできません。また時には研究が思わぬ方向に進み、失敗が引き起こした恐ろしい逸話も数多くあります。さらに、人々が研究の参加者となった途端、医療従事者は、参加者個人の利益よりも、研究全体の成果を重視するのではないかという不安を引きつめてしまいます。

こうした状況は、研究者の動機が非常に多様であるために、さらに複雑になっています。世の中の利益を第一に考えて研究を行う研究者がいる一方で、お金や、仕事の将来性を高めることが動機の研究者もいます。時には、研究者の動機を判定することが困難な場合もあります。そのため、患者や世の中の人々は、研究が恐ろしいものだと考えてしまうでしょう。

こうしたことが、医療分野での研究に対する規制の基準が高い理由の1つといえます。倫理審査委員会（REC、主に欧州）や施設内審査委員会（IRB、主に米国）として一般的に知られる独立審査委員会は、研究という名のもとで起こる不正から人々を保護しています。
独立した審査委員会は研究計画をひとつひとつ審査し、その計画を先に進めることができるかどうかを慎重に検討します。また、研究を監視するという重要な役割を果たしており、承認された研究であれば、世の中の利益を考えて計画されたものであるとの確信を社会に与えてくれます。審査委員会は、一般の人々を含む無償のボランティアで構成されることがほとんどです。各種の研究計画や、試験に参加する可能性のある人々に提供されるあらゆる情報に対して審査を行います。また研究者に対して、作成した研究計画や参加者に提供する情報に手を加えるよう求めることもできます。委員会の承認がなければ、研究を先に進めることはできません。独立審査委員会は、研究の参加者が不要な危険にさらされることなく、また、研究者が自分達の思い通りには研究できないことを、参加者や社会に対して保証するのに役立っています。

研究は、他にもさまざまな形で規制を受けています。医学研究に特化した法律が、大半の国々で存在します。例えば EU では、加盟国すべてが、臨床試験指令（いわゆる「医薬品の臨床試験（つまりは治験）」に関する決定事項を明確に示したもの）に従わなければいけません。また、いくつかの国々では、医療分野におけるすべての研究あるいは大半の研究を対象とする規制制度が適用されています。研究を主目的としない多くの法律が、研究に関わってくることもあります。例えば、個人情報の機密を保護する目的で制定された情報保護法は、多くの国で医学研究に適用されています。ほとんどの国で、多様な規制官庁が研究規制に関与しています。

研究を行う際は、専門的な実務規範や国際宣言による規制も受けます。例えば、医師や看護師は所属する専門機関の実務規範によって制約され、逸脱した場合は、登録が抹消されたり、別の制裁が適用されるおそれがあります。また、世界医師会のヘルシンキ宣言をはじめとする国際宣言の多くは、それ自体に法的拘束力がなくても、基準を定める際に大きな影響力を持っている。

治療研究に対する規制制度は適切か

こうした規制基準は研究に一定の保証を与えますが、現行の規制制度は、評価の乏しい治療法を通常診療で患者に使用しようとする医師ではなく、むしろ、それを研究しようと考える研究者に対して非常に重い負担を課しています。さまざまな法律、監督機関、実務規範などが複雑に重複する現行の規制制度は、過剰であり、時間がかかりすぎる状況が多くの国で見受けられます。研究者は、さまざまな所からいくつもの承認を得なければならない、またその結果、あいの反対する要求にも対処しなければならないこともあります。

さらにこうした制度全体が、人々により安全な医療を提供するための情報を収集する上で大きな障壁となり、時間もかかるという状況を生んでいます。
理想的な社会では

「理想的な社会では、どのような状況であっても、転帰に関する匿名のデータを収集することができ、そのデータと治療歴を照らし合わせることができる。ただし、他人の命よりもプライバシーを心配する人々のデータは例外であるが。」（中略）理想的な社会では、患者がどこでどのような治療を受けていても、どの治療法が最適なのかという純粋な不確定要素がいれば、無駄なく、効率的に無作為に選んだ治療を施し、経過を観察することができる。理想的な社会では、こうした考えが日常的な医療の姿として受け入れられ、患者に懸念を抱かせることもない」

Goldacre B. Pharmaco-epidemiology would be fascinating enough even if society didn’t manage it really really badly. The Guardian, 17 July 2010.
Available online: www.badsceince.net/2010/07/pharmaco-epidemiologywould-be-fascinating-enough-even-if-society-didn’t-manage-it-reallyreally-badly

例えば、機密保持に関連するデータ保護法や実務規範は、有用であると考えられて導入されましたが、これらによって研究者は、治療の有害反応を正確に知るために診療記録から所定のデータを収集することが難しくなりました。また、臨床試験を計画する研究者は、試験を計画してから1人目の患者を登録するまでに数年を要することがあり、さらにその後の患者の登録も、規制上の要求事項のために遅れることがあります。そして研究者がこのような規制制度のもとで研究実施に努力している間にも、人々は不必要に苦労し、命が失われています。現実には、効果が証明されていない治療法でも、「日常的な」診察としてなら、患者の同意がある限り、医師はその治療ができるのです。逆に同じ治療法でも、効果を適切に評価するため研究として行うと、延々と続く規制プロセスを経ることになります。そのため医師は、治療法を適正に評価しようという意欲を失い、たとえ治療効果が不確かでも、それを解決することなく、その治療法を使い続けるのです（第5章を参照）。
偏った倫理

「医師が入念に学習し、転帰を評価し、その結果を公表しようという考えを持って、新たな治療法を試しているのなら、その医師が行っていることは研究である。そのような研究に参加する人々は、特別に保護を受けるべきと考えられている。研究計画は、施設内審査委員会（IRB、欧州の倫理審査委員会に相当）の審査を受けなければならない。また、インフォームドコンセントも慎重に精査されるが、研究が許可されない可能性もある。その一方で、同じ新しい治療法について、研究する意思はなくても、患者に効果があるはずだと考えるだけで医師はその治療法を試すこともできる。この場合、新しい治療法を試みるとは研究ではないため、IRB の承認を得る必要もなく、医療過誤訴訟のリスクを回避するためだけに患者から同意を得ればよい。

後者の状況（非研究）に置かれた患者のリスクは、前者の状況（正式な臨床研究の一環）に置かれた患者よりも、はるかに高いように感じられるだろう。さらに前者の状況にある医師の方が、より素晴らしい倫理観を持っているように思える。後者の状況にある医師が、単に自分の直感に基づいて治療法を用いるとしているのに対して、前者の状況にある医師は、その治療法を評価しようとしている。それにも関わらず、患者を保護するための倫理規定が、一般化が可能な知識を生み出すという目標に集中しているため、研究をする責任感のある医師を規制対象にする一方で、無謀な冒険をおかす医師は規制しないのだ」

Lantos J. Ethical issues – how can we distinguish clinical research from innovative therapy? American Journal of Pediatric Hematology/Oncology 1994;16:72-75.

研究に対する現行の規制制度は、研究の参加候補者の保護やリスクを重要視する観点から過剰になり、患者や一般の人々がパートナーとして研究プロセスに参加する機会がますます増えていることを考慮していません（第 11 章を参照）。しかしその一方で、希望のもてる一面もあります。研究規制委員会は、研究倫理に対する「画一的な」審査方法が、必要以上に負担となっている可能性があると考え始めています。例えば、英国では現在、「適切な審査方法」に対する評価が行われており、重大な倫理問題の心配が研究に対しては、迅速で簡易化された審査方法を適用することに問題がないかどうか検討されています。

情報と同意

研究のための情報提供や同意に関連する必要事項は、規制制度のなかでも、研究者に治療法の不確実性の検証を促すのではなく、意欲を失わせる一要因になっています。効果を検討する際は、比較試験に参加する少数の人々だけではなく、現在治療を受けているあらゆる人々の利益を考慮することが重要であり、また、それが倫理にかかっています。したがってインフォームドコンセントの基準は、患者が正式な治療評価のもとで治療を受けているかどうかに関わらず、同じである必要があります。患者が研究の価値や意図への同意
を決断するためには、患者の求める情報はすべて、いつでも必要な時に必要なだけ入手できるようにする必要があります。

日常の診療で治療を行う際は、患者それぞれが違う優先順位や要求を持ち、それが時間とともに変化していくこともあるでしょう。さらに患者が必要とする情報の量や種類もそれぞれ異なるだけでなく、与えられた情報すべてを限られた時間で理解する能力や、不安や心配の程度も異います。医療従事者はその時々で、患者１人１人の要求に応え、理解を示すことで、患者が治療法を選択できるようにしています。

インフォームドコンセントについて改めて考える

「インフォームドコンセントは、優れた生物医学的行為の基本ではない。また（中略）そうである必要性もなく、できないだろうと考え始められている。この50年で築き上げられたインフォームドコンセント取得に対する絶対主義は、今後、はるかに短い期間で改革され、簡素化されるだろう」

一方、研究においては、参加候補者への情報提供も規制機関の監視下にあります。規制機関が人々に試験への参加を呼びかける際には、しばしば関連する可能性のある情報を最大限公開するよう求める場合があります。しかし、情報を最大限公開することによって、どちらかと言えば「医師に任せたい」と考える人々が必要以上に困惑したり、イライラしたり、心配したりする可能性や、不必要的懸念を抱く可能性もあります。

第5章 p51-52で述べた、早産児に対してカフェイン製剤を投与する臨床試験では、試験の参加候補者に最大限の情報を提供するよう求められたため、カフェイン製剤がもたらす可能性のあるすべての危険について明確な説明が提供されました。このカフェイン製剤の試験では、世界中から2,000人を超える早産児が募集されました。募集を順調に進めず、予定よりも一年長くかかってしまいました。特に時間を要したのは英国で、承認過程で規制上の遅れが生じたことにより、複数の施設が試験から離脱しました。
良い医療行為における常識的なインフォームドコンセントの取り扱い

「インフォームドコンセントをめぐる議論で見過ごされていることは、患者理解の本質である。患者がどのような情報を知りたいのか、また、最低限のことだけ知りたいと考える患者をどう扱うのか。患者に提供した情報がどの程度理解されたかを評価する分野は、ほとんど研究が行われていない。医師は、患者やその家族に提供した情報が、どの程度正確に理解されているのかよくわからないと感じることが多い。情報を理解できるかどうかは、誰からその情報を提供されたか、どのように説明されたかが影響し、また、情報を理解するための環境や時間も影響する。医療行為では、支配的なやり方は許されない。良い医療行為を行うには、物事を分かりやすく説明し、伝えるべき情報を患者が耳を傾けてくれるように伝え、どの程度理解できたかを確認するという常識的な方法が必要なのだ」

Gill R. How to seek consent and gain understanding. BMJ 2010;341:c4000.

さらに研究倫理委員会は、カフェイン製剤によって新生児が発作を起こす可能性があることを親達に伝えるべきであると主張しましたが、この発作は、通常の10倍量を過剰投与しなければ起こることのないものでした。もしカフェイン製剤が日常的な治療の一環として使用されていれば知られなかったであろう、おそらく知る必要のない恐ろしい情報が親達に突き付けられていたのです。

研究規制のうち広く奨励されている方法が、悪影響以上に利益をもたらすというエビデンスはほとんどありません。実際、今のエビデンスといっても、非常に憂慮すべきものです。例えば、すぐに行うべき治療の効果を評価する試験でも、まずは書面による同意を得るという「儀式」が必要なため、治療効果が過小評価されたり、避けられたはずの死が生じたりする可能性があります。

同意の取得は、利益以上に悪影響をもたらす可能性のある公衆衛生的介入です。善意による他の介入策と同様に、その影響については、厳密な評価が行われるべきです。研究倫理委員会が、自分達の「処方薬」は悪影響よりも利益をもたらすという堅実なエビデンスを示す責任を受け入れていれば、先程述べたような死を招く結果となることは、何十年も前に認識されていました。

医師と患者の間の信頼こそが、納得のいく話し合いができる基盤であることを認識し、研究の参加候補者に情報を提供する際には、画一化された厳格な方法よりも、柔軟な方法を用いる方が有益です。しかし、規制制度が研究に介入するため、現時点では、医師が研究について患者にどのように説明するかを選ぶことはできません。また医師は、研究特有の不確かなさを伝えることが難しいとたびたび感じています。例えば、第5章で述べたように、患者を臨床試験に登録する医師は、「どちらの治療法が最適なのかはわかりません」ということに気づきますし、患者の方は、そうした言葉は聞きたくないということが
たびたび起こります。そのため、医師と患者の双方が、研究の不確かさ、および研究の必要性をより深く理解する必要があるのです（第 11 章を参照）。

学術的探求か分別ある選択か

「12 年前、33 歳の時に乳がんが見つかり、私は医療者から患者になった。当時、私は、自分の専門分野（歯科矯正学）で用いられる治療法の有効性を評価するためのランダム化比較試験における問題点についての博士論文に取り組んでいた。研究を通して、臨床試験への参加が有益であることを認識するようになったが、皮肉なことに、早期乳がんを患う若い女性に対する治療が確立していないことも知った。そのため、乳がんと診断されたとき、自分が参加できるランダム化比較試験があるかどうかを医師に尋ねたが、医師の返事にショックを受けた。医師は、私に『学術的探求心から、自身にとっての最良の治療をやめてはいけない』と言ったのだ。では最良の治療とは何だったのか。もちろん私は全くわからなかったし、医師ですら 50 歳以下の女性に発生した早期乳がんに対して、どのような治療が最も有効かが不明だったこともわかっていた。一体私はどうするべきだったのか」

規制制度がやらないこと

研究に対する規制制度は、試験を始める前から、大きな負担となる要求を研究者に押しつけますが、その一方で、規制制度が明らかに役立たない、あるいは十分に機能しない例も沢山あります。規制制度の多くは、提案された試験が本当に必要なものであるとの十分な確証を与えています。例えば、新たに試験を始める前に、すでに存在するエビデンスについて徹底的見直しをしたことを示すよう研究者に求めていません（「系統的レビューの重要性」を参照）。

さらに研究の規制制度が取り組むのは、試験の初期段階がほとんどで、試験への参加者の登録の管理に重点を置いています。しかし意外なことに、試験が始まると監視はほとんどありません。また、研究の知見がいかに疑問を減らしたかを説明すべき、試験終了後には、研究者にすみやかに報告書を公表させることには注意を払わない（報告しない場合すらある）のです。
研究規制はどうあるべきか

「倫理学者らが臨床試験を批判したいたなら、科学的に不適切な研究、既存の研究の焼き直し、とりわけ不当な排除や、非合理的で理不尽な研究資源の使用に目を向けるべきだ。現在の議論は、使用されている治療法の安全性を確認し、他の治療法と比べてどこが優れているのかを確かめるという試験の目的を見失っているため欠陥がある。試験に近道がないのと同様に、倫理にも近道はない」

治療効果の研究に参加を呼びかけられた人々は、その試験には参加する価値があり、自分達の参加が有用であると感じる必要があります。規制制度には、参加候補者がそうした確信を持てるような取り組みと、一方で、患者にとって重要な研究課題に対する優れた研究を、無用に妨害しないようにしなければなりません。治療法の研究は、あらゆる人々にとって重要だという認識が広がりつつあります。患者や社会が研究の計画や実施に関与する機会が増えるにつれ（第11章を参照）、規制による障害の排除を求める声は高まることでしょう。

キーポイント

- 研究に対する規制は、必要以上に複雑である。
- 現行の研究規制制度は、より良い医療に役立つ公正な治療評価実施の妨げになっている。
- 研究者には規制上の要求事項が負担になる一方で、規制制度は提案された研究の真の必要性についての確認を怠っている。
- 実施を許可された研究が、その後、研究規制によって監視されることや追跡されるとはほとんどない。
第10章 良い研究、悪い研究、そして不要な研究

これまでの章で、私たちはなぜ治療の検証が適切に意図され、患者や一般市民の問題として対処する必要性があるのかを見てきました。期待された効果が証明されなかったとしても、重要な知見が得られ不確実性が減れば、それでよいのです。

医療研究の多くは良いもので、研究デザインや報告基準に従いながら着実に改善されています。しかし悪い研究、もしくは不必要な研究も、いろいろな事情で行われ、発表もされています。「もっと研究が必要」という果てしない要求に対するより良い戦略は、研究数を減らすこと、そして患者のニーズに焦点を当てつつ、焦点を絞った研究を正しい根拠のもとで実施することです。この章ではこうした問題を取り上げます。

良い研究

脳卒中

脳卒中は、死亡または長期障害をもたらす主な原因です。最初の脳卒中で死に至る割合は1/6か2/6で、再発の場合4/6に跳ね上がります。脳卒中の原因の1つは、脳に血液を供給する頸動脈の狭窄です。頸動脈の内側に貯まる脂肪が時々剥がれ、毛細血管を詰まらせ、そして脳梗塞を起こします。1950年代に外科医はそれらの脂肪を除去するために、頸動脈内膜剥離術として知られる手術を開始しました。手術により脳卒中のリスクが減少することが期待されました。しかし、いかなる手術においても合併症のリスクは存在します。

頸動脈内膜剥離手術の人気は高まりましたが、手術のリスクと効果を評価するためのランダム化試験が設定されたのは、1980年代になってからでした。リスクや効果を知ることは、患者にとっても医師にとっても、非常に重要です。1つは欧州で、もう1つは北米で、2つのよく考案された試験が、すでに頸動脈狭窄症状（軽度または一過性の脳卒中や脳卒中様症状）のある患者を対象に、手術と手術以外で最善の治療を比較しました。数千人の患者が、これらの長期研究に参加しました。この結果1990年代に、手術は脳梗塞あるいは死亡リスクを軽減するが、その効果は頸動脈の狭窄の程度によることが報告されました。比較的軽度の狭窄の患者は、手術を受けることで、逆に脳梗塞を起こす可能性という不利益がありました。これらは重要な知見として、臨床の場に直接影響を与えた2,3。
妊婦の子癇前症

もう1つの注目すべき良い研究の例は妊婦に関するものです。全世界で毎年60万人の女性が妊娠に伴う合併症で亡くなっています。ほとんどの死亡は開発途上国で発生します。多くは妊娠に伴う痙攣発作で、子癇として知られる症状です。子癇は母子の命にかかわる深刻な症状です。子癇前症（妊娠中毒症として知られる）の素因を持つ女性には、高血圧と尿蛋白が認められます。

1995年に、簡単で安価な硫化マグネシウム注射で、子癇の痙攣の再発を抑えられることが研究で示されました。同じ研究では、発作を抑えるための高価な抗痙攣剤よりも、硫化マグネシウムの方が発作を止めるのにより有効であると報告しています。そこで研究者は、硫化マグネシウムにより、子癇前症を持つ女性の痙攣発作を予防できるかどうかの調査が重要と考えました。

Magpie試験を経験して

「私は重要な試験に参加できて本当にうれしかった。私は妊娠32週目で腹部膨隆があり、日を追うごとに重症化し、最終的に子癇前症と診断され、38週目で入院した。赤ちゃんは帝王切開で取り出され、ありがたいことに母子ともに完全に回復した。子癇前症は恐ろしい病気である。私にとってそうであったように、試験結果が多くの女性にとって利益となることを真に願っている。」Clair Giles氏、Magpie参加者。

この疑問に答えるべく設計されたMagpie試験は、世界33カ国において子癇前症を持つ1万人以上の妊婦が参加して、大規模に実施されました。通常の医療ケアに加えて半分の女性が硫化マグネシウム、残り半分はプラセボ（偽薬）の注射を受けました。Magpie試験からは明確に説得のある結果が得られました。硫化マグネシウムは発作の起こる機会を半減させました。この治療では胎児の死亡リスクは減少しませんでしたが、母親の死亡リスクを減少させたというエビデンスが得られました。そしてわずかな副作用を除けば、硫化マグネシウムは母体にも胎児にも有害な影響を及ぼしませんでした4,5。

子どものHIV感染

良い研究の結果によって、エイズ（AIDS）を引き起こすヒト免疫不全ウイルス（HIV）に感染した子どもにも、大きな成果がもたらされました。2009年末、国連エイズ合同計画（UNAIDS）のデータによれば、世界で推定250万人、サハラ以南のアフリカ周辺の230万人の子どもがHIVに感染しています。毎時約30人の子どもがAIDSが原因で亡くなっていきます6。一般的な死亡原因は、子どもの弱い免疫機能に伴う肺炎などの細菌感染です。コト
リモキサゾールは広く普及し、安価な抗生物質として子どもや大人の AIDS に関連する肺の感染治療に長年使われてきました。さらに大人の HIV に関する研究では、コトリモキサゾールで細菌感染からの他の合併症も減らしているはずです7。

HIV の子どもの感染を減らせるかも知れないという初期のエビデンスが示されたとき、英国の研究者とザンビアの研究者が、コトリモキサゾールの予防薬としての効果の可能性を評価するため大规模研究に取り組みました。2001年に始まり約2年続いたこの試験では、500人以上の子どもたちを対象に、抗生物質とプラセボを比較しました。コトリモキサゾールが AIDS 関連の死を 43% 減少させたことで、予想より早く結論が明らかとなりました（プラセボ群が 112 人死亡に対してコトリモキサゾール群が 74 人死亡）。また入院の必要性も減少しました。この時点で、独立した試験監視委員会は、試験の中止を提言しました。

この結果を受けた直後の対応として、ザンビア政府のイニシアチブで、試験に参加した子どもたち全員にコトリモキサゾールが投与されました。またより広範な対応として、世界保健機構 (WHO) と UNICEF は、HIV 感染の子どもたちに対する医薬品の推奨を直ちに改訂しました8,9。

これらの機関は、HIV 感染の子どもたちに対する安価で、命を守る安全な治療薬として、コトリモキサゾールを引き続き推奨しています10。

悪い研究

精神疾患

残念なことに研究はねつに適切に行われ、また妥当なものであるとは限りません。遅発性ジスキネジアとして知られる痛ましい状態の例をあげてみましょう。これは精神疾患、特に総合失調症に処方される精神安定薬（抗精神病薬）と呼ばれる薬の長期使用による深刻な副作用です。遅発性ジスキネジアの最も目立った特徴は、繰り返し無意識に行う口と顔の動きです。顔をしかめ、舌打ちをし、舌を度々突き出し、頬を萎めたり、膨らませたりします。同時に時々手や足をピクピクさせることもあります。3か月以上精神安定剤を服用している5人のうち1人が、これらの副作用を経験しています。

1990年代に研究者グループは、過去30年にわたり遅発性ジスキネジアにどんな治療が行われてきたのかについて、系統的な調査を開始しました。研究者は、90種類の異なる薬物治療を含む500件のランダム化試験が確認されたことは驚きだと、1996年に書いています。しかしそれらの試験からは、何も役立つデータが生まれませんでした。いくつかの試験では患者数が少なすぎて、信頼できる結果はありません。また別の試験では、意味のある結果を出すには短すぎる期間でしか治療していませんでした11。

同じ研究グループのメンバーは、一般的な総合失調症の治療に関連するランダム化試験の内容と質について、包括的な調査報告を試みました。2,000件の試験を調べましたが、その内容に落ちしました。精神安定剤は、数年かけて確かにいくつかの点では統合失調症患
者の症状を改善しました。例えば、ほとんどの患者は現在、自宅や地域の中で生活することができます。しかし 1990 年代においては（現在でも依然として）、ほとんどの薬が入院患者で試験されており、外来患者の治療としての適合性は不確かな。それに加え驚いたことに、一貫性のない方法で治療の効果が評価されていました。主に薬物療法ですが、心理療法を含む 600 種類以上の治療について研究者らが調べたところ、結果の評価に 640 種類の異なる尺度が用いられ、そのうち 369 種類はたった 1 回だけ使われていました。そのため、異なる試験の成果の比較はとても難しく、結果は医師や患者によって事実上解釈ができないものでした。その他の問題では、有効な結果を与えるにはあまりに小規模か、短期間の研究が多数ありました。また新しい治療薬は副作用の少ない治療との比較でなく、副作用を起こすことが分かった薬の最大用量との比較が行われていました。これは明らかに公正を欠いた試験です。このレビューの著者らは、質、期間、臨床的効果のいずれも十分と言えない半世紀にわたる研究が示したのは、臨床試験を入念に計画し、適切に実施し、きちんと報告する必要性であると結論付けました。

分娩中の女性に対する硬膜外麻酔

分娩中の女性の痛みを取る硬膜外麻酔の初期の試験は、悪い研究の例として、患者の実際の問題に対する効果を評価することの重要性を明確に示しました。1990 年代にある研究者は、硬膜外麻酔の実施群と硬膜外麻酔の未実施群を比較した試験のレビューを行いました。数百万人の女性が 20 年前に硬膜外麻酔を提供されたにもかかわらず、偏りのない、妥当な方法で、硬膜外麻酔と他のタイプの痛み止めを比較する試験に参加したのは 600 人以下で推測されました。研究者は、明確に分析できそうな 9 件の比較試験を特定しました。分娩中のストレスを反映すると思われるホルモンやその他の物質を測定し、比較が行われました。新生児に対する効果にも焦点が当てられました。しかしながら、女性自身からの報告による痛みの比較がされていました。試験はたった 2 件で、それ以外の試験では報告がありませんでした。別な言い方をすれば、試験を実施した人々は、最も重要な結果（いかに効果的に女性の痛みを取り除くか）を大きく見落としていたのです。
不要な研究

未熟児の呼吸困難

良い研究と悪い研究の間に区分されるものもあります。単に不要な研究です。その一例が、未熟児に関する研究でしょう。未熟児として生まれると肺の発達が不完全で、呼吸困難のような生命を脅かす合併症のリスクがあります。1980年代初期までに、早産の危険性のある妊婦にステロイド系薬を投与すると、新生児の呼吸困難や死亡を減らすという压倒的なエビデンスがありました。にもかかわらず、ステロイドをプラセボや無治療と比較する試験がその後も数十年間続けられました。もし初期の試験結果が系統的にレビューされ、メタアナリシス（第7章および第8章を参照）と組み合わされていたら、集約されたエビデンスによりそれらの検証は単純に不要であることが示され、その後の試験が始められることもなかったでしょう。これらの不要な試験に参加したために、半分の参加者は効果的な治療を受けることができませんでした。

脳卒中

もう1つの不要な研究の例は、先に行われた検証結果が集約されず、分析されなかったために、ニモジピン（カルシウム拮抗薬の1つ）と呼ばれる薬による脳卒中の治療に関するものです。脳卒中にかかった患者の脳のダメージ量を減少できれば、障害の可能性を小さくできるでしょう。1980年代の初め、有望な効果を示した動物実験の後に、この目的でニモジピンは脳卒中患者に試験投与されました。脳卒中患者で有効性を示唆する1件の臨床試験が1988年に報告されましたが、その後のニモジピンや他のカルシウム拮抗薬に関する複数の試験結果は相反するものでした。1999年に、8,000人近い患者が参加してきた臨床試験で蓄積したエビデンスが系統的にレビューされた結果、ニモジピンの有効性はないと認められました（第8章p84を参照）。ニモジピンの使用は、妥当性のある科学的エビデンスに基づくものだったはずです。いったいそれはどこから来たのでしょうか？

患者での研究結果に照らし合わせ、初めて動物実験での知見が適切に精査されました。しかし動物実験について系統的レビューをとると、動物実験の研究計画が見なして粗末で、試験結果にもさまざまなバイアスがみられるため信頼できないことが明らかになりました。言葉を変えれば、そもそも脳卒中の患者で臨床試験を実施するほど説得力がある根拠は存在なかったのです。
アプロチニン：手術中と術後の出血の影響

研究資金提供者、学術機関、研究者、研究倫理委員会そして科学学術誌のすべてが、不必要な研究に加担していました（第9章を参照）。第8章で説明したように、また不必要な研究の例としてあげた最初の2つの事例が示すように、まずは既存の研究でわかっていることを系統的にレビューしてからでなければ、新たな試験を計画、実施すべきではありません。

2005年に、手術中と手術後の出血を減らすアプロチニンと呼ばれる薬の対照試験に関する衝撃的な解析が報告されました。アプロチニンは有効でした。衝撃的だったのは、アプロチニンが大幅に輸血の量を減らすという強力なエビデンスが蓄積されてからも、長い間、いくつもの比較試験が行われ続けたという事実です16。解析の時点で、64件の試験が報告されていました。1987年から2002年に、アプロチニンについての過去の試験を引用していた割合は最高33%から、最近の報告書の中ではたった10%に落ちました。後続の44件の報告書のうち、わずか7件しか最大規模の試験（試験規模中間値より28倍大きい）を引用しておらず、1994年から1997年に報告された試験の中に系統的レビューを引用した試験はありませんでした。

レビューアの著者は、科学はエビデンスの累積だと強調しますが、多くの科学者はエビデンスを科学的に累積していません。ほとんどの新しい研究が既存のエビデンスの系統的レビューの観点から計画されていないばかりでなく、これらのレビューの更新を踏まえて、新たなエビデンスが報告されることは非常にまれなのです（第8章を参照）。

歪められた研究優先度

生物医学研究を行うほとんどの研究機関と実施研究者は、人々の健康に貢献することが目的だと思います。しかし、毎年報告される何百万もある生物医学研究報告のいくつかが、この価値ある目的に役立つ貢献をしているでしょうか？

患者にとって重要な質問

ブリストルの研究者は、基本的な疑問を持ちました。「膝の変形性関節症の研究はどの程度患者やそれを治療する医師にとって重要な質問を扱っているか」という疑問です17。まず4つのグループを集めることから始めました。患者、リウマチ専門医、理学療法士、一般開業医の各グループです。みな明らかに、これまでにもあった製薬会社が資金提供して行われる、非ステロイド抗炎症薬（例えばイブプロフェンなど）対プラセボの比較試験など望んでいませんでした。薬剤試験ではなく、患者は理学療法や手術に対する厳格な評価と、しばしば痛みをもたらす慢性的な障害にうまく対処するための指導や療法に関する研究を望んでいました。もちろんこうした形の治療や対処法は、薬剤よりも商業的利益をあげる機会が少ないので、しばしば研究の対象としては無視されます。
他の治療研究分野でも、もしこのような評価を行ったなら、患者と医師が知りたい治療効果への疑問と、研究者が掲げる課題との間にある同様のミスマッチをどれだけ見出すことでしょう。残念ながら、こうした不一致は、どの分野でも蔓延しています18, 19, 20, 21。

薬剤の組成をわずかに変更するだけで、各段に新しい、より有効な効果を発揮するといったことはめったにありません。にもかかわらず、そうした研究が、関節炎の領域だけでなく他の慢性疾患の領域でも非常に多く行われています。なんという資源の無駄遣いでしょうか。

何を研究するか誰が決める？

明らかにこの状態は問題です。しかし、なぜこうなってしまうのでしょうか？研究者が取り上げる研究課題が、外的要因によって歪められることが一因です22。例えば製薬業界では、株主や出資者の利益を最優先して研究を行います。患者と医師に対する責任は次です。ホルモン補充治療について迷う女性や、うつ、不安、不幸な気持ちにさいなまれている人や痛みに苦しんでいる人など、大きな市場がビジネスを動かしています。ただし、「大きな市場」の疾患であっても、この商業的な動機によって行われて、重要な新たな治療につながる研究は、この十年間、ほとんどありませんでした。むしろ製薬業界は、同系統の薬剤問で類似する化合物、いわゆる「me-too」薬を製造してきました。これはスーパーマーケットで売っているパンが、スライス幅で変化がつけられたものの、結局は1種類の食パンでしかないようなものです。それでいて、製薬業界は研究よりも宣伝により多くの費用をかけているのです。

しかし製薬業界は、いかにして既にある安価な薬ではなく、これらの新たな薬を処方するよう医師に働きかけているでしょうか。一般的な戦略は、新薬において、何の薬も処方しない状態と比べ効果があることを示す小規模研究を数多く実施することです。その一方で、新薬が既存薬よりも有効かどうかを調べる研究は行いません。残念なことに、このような無益な事態に患者を登録しようとする医師を見つけることは難しいことではありまいません。そして、同じ医師は、このような方法で試験が行われた新薬を処方するのです23。さらに医薬品の許認可を担う当局も、新しい薬は既存の効果のある治療との比較ではなく、プラセボと比較すべきだと主張して、さらに状況を悪化させています。
カナダにおける“ME-TOO”薬のインパクト

「1996年から2003年の間の薬剤支出の増加のほとんど（80%）が、1990年以前からある安価な代用可能薬と比べ、顕著な追加メリットもないのに特許をとった新薬の使用によるものと説明されている。こうしたME-TOO薬（英語で“私も”の意）を実績のある既存薬より大幅な高い価格で使用することによるコストの上昇は、十分に精査される必要がある。ニュージーランドで使っているような薬価設定戦略を利用して節約が可能になり、予算を他の健康管理策に回すことができるかもしれない。例えば2003年にブリティッシュコロンビアで使われていたME-TOO薬の半分を、今までの薬と同等の価格にできれば、3億5000万ドル（処方薬の全支出の26%）の節減ができる。この節減により1,000人以上の新たな医師の診療報酬を払うことができる。

長期にわたり確立した分類で、新たに特許をとった薬を含めた世界の販売トップ20の薬剤リストをみるなら（中略）先進国での消費を独占しているのは、ほとんどがME-TOO薬だろう」。

製薬業界が使うもう1つの戦略は代筆です。これはプロのライターが、誰かになり替えて文章を書くことです。ほとんどの人は「有名人の自叙伝」などでは「ゴーストライター」が書いているだろうと思います。しかしゴーストライターの書いた文献は学術誌にもあり、潜在的な懸念を生んでいます。製薬業界は、時にはメディア企業を雇って製品が脚光を浴んでいるという記事を準備することも珍しくありません。一旦、記事が準備できると、研究機関が「著者」への「謝礼金」を支払う契約をするのです。

医師と製薬会社

「製薬会社から医師たちに支払われる合計金額がどれくらいなのか誰も知らないが、私は米国の9つの製薬会社の決算報告から1年間に数百億ドルになると推定した。そのようにして製薬業界は医師らが自分たちの薬をいかに評価し、使うかということに大きな支配力を持っている。特に有名医科大学の上級教授との強力なつながりが、研究の結果、薬の使用方法、さらには病気の定義にまで影響を及ぼしている。」

その後、その記事が出版されます。論説が特に人気があります。学術誌の別冊もターゲットになります。これは本誌とは別に縄られた冊子ですが、本誌と同じ名称でありながら、しばしば製薬業界から資金援助を受けて出版されています。また本誌のように、厳格な査
読を経ていない論説が多い傾向にあります。製品の効果は大げさに、有害性は軽く扱う形で販促メッセージがつくられ、宣伝されるのです。（第8章p97を参照）

製薬会社はまた、医学雑誌に製品の広告を載せることができます。これらの広告は、効能を裏付けるエビデンスを参考資料として含んでいます。これらは一見、説得力がありそうですが、第三者がそのエビデンスを精査すると、別の像が浮かび上がります。エビデンスがランダム化試験で得られたものでも、つまり広告が信頼できる研究に基づくものと思われても、すべてが信頼できる評価を受けたわけではない場合もあります。代表的な医学雑誌の広告のランダム化試験を研究者らが分析したところ、引用された試験で良質と判断されるのはわずか17％でした。これらは宣伝対象の薬の効果に対する主張を裏付けていませんでした。製薬会社から資金提供を受けてはいませんでした。製薬会社から財政支援された研究は、製薬会社の製品にとって望ましい結果を出す傾向があることが知られています25,26。

怪しく、詐欺的で、騙すもの？

British Medical Journal誌のクリスマス号に軽い記事を執筆していた2人の研究者が、冗談でHARLOT社という会社をつくった。この架空の会社は、臨床試験スポンサーに対し、例えば以下のようなさまざまなサービスを提供するという。

「マーケットシェアを伸ばしたいという怪しい薬や医療器具の製造者、不要な検査や治療サービスの需要を伸ばしたいというヘルスケア専門家協会、そして理不尽で利己的な健康政策を遂行しようとする自治体や国の健康当局の皆様に対し、私たちは確実な成果をお約束します。怪しいME-TOO（模倣）薬に対しても[私たちのE-ZEE-ME-TOO研究計画チーム]が、よい結果を出す試験をお約束します。」

驚いたことに、このありえないHARLOT社のサービスに対して、明らかに真剣と思われる問い合わせが複数あったのである。

医学雑誌「The Lancet」27のような一流の医学雑誌の論説により、いくつかの医学研究を動かすような動機や、増大する大学と産業間の不審な関係が注目を集めました。New England Journal of Medicineの元編集者は単刀直入に、「医学という学問は売り物か？」と、問いかけています28。

商業的成功を優先することだけが、患者の利益を無視する生物医学研究に歪んだ影響を及ぼしてきたのではありません。大学や研究資金提供組織に属する多くの人々は、病気の基礎メカニズムを解く試みから、健康問題の改善を図ることができると信じています。だからこそ彼らは実験室で、動物を用いて研究を行うのです。そのような基礎実験は間違いなく必要ですが、患者を対象とする研究よりもはるかに大きな資金を使うことを支持する
エビデンスはほとんどありません 29,30。それでも結果的に、患者に直接関係するかわからない実験研究が大量に行われてきたのです。

必要なのは、遺伝子を見つけること

「願わくば、（中略）遺伝学の革命が人類のすべての問題を解決してくれること。より良い住宅を建て、汚染を排除し、より勇敢にがんと闘い、誰でも使える託児所のための基金を実現し、国立スポーツスタジアムの場所や設計に皆がデザインに同意する。そんな風になる遺伝子を見つけ、複製できるようになる。まもなくすべての新生児は、遺伝学的に同じ条件で生まれるだろう。例えば、GCSE の［高校試験］で女子が男子よりも良い成績を取るような遺伝子は特定され、排除される。遺伝子の可能性に終わりはない （中略）だからそう、私たちは不確かな世界に足を踏み入れているが、同時に確かな希望もある。遺伝子問題が深刻な道徳的ジレンマを生んでも、やがてはその問題を解決するための遺伝子を探し出すことが可能になるだろう」

このような歪みが生じる理由の 1 つは、待ち望まれていた医学の進歩に対する基礎研究、特に遺伝子学の貢献についての誇大な宣伝です（第 4 章 p35 遺伝子試験を参照）。優秀な医師で遺伝子研究者の Sir David Weatherall 氏は 2011 年に、「われわれに死をもたらす主な要因は、小さな影響力をもつ膨大の遺伝子の働きと、身体的、社会的環境からの大きな影響の流入の組み合わせである。遺伝子は、いくつかの病気の過程について価値のある情報をもたらすが、同時に根本的な病気のメカニズムの個体性と多様性も強調している。私たちの遺伝子の構成に基づいて、個別化医療ができる時代は遠い未来であることを明らかだ」と述べました31。
DNAの構造が発見されて50年以上経った今、かつての「遺伝子革命」による医療への利益を主張する声は小さくなったようです。現実的になりつつあります。ある科学者は、新薬開発における遺伝子学の可能性について、「私たちの現実的な（中略）遺伝子学も、環境と薬の臨床使用を含む他の因子との関連をあわせて検討しなければならない。薬が患者に効かないからといって、応答する遺伝子の変化が原因とは言えない」と述べました。科学雑誌「Nature」のヒトゲノム配列解析10周年記念誌の論説は、次のように述べています。「いくつかのタイプの乾癬にある特異な遺伝子の欠陥を標的とする薬や、いくつかのまれな遺伝性疾患において、ある程度の進歩があった。しかし、ポストゲノム生物学の複雑さは、この一滴の治療から洪水のような大きな治療に発展するという初期の望みを打ち砕いた」。

乾癬の患者は研究の恩恵を受けていない

「乾癬では異なる治療の選択を比較した、あるいは、長期治療に目を向けた試験は少ない。これが症状が一生涯続く慢性な病気であることを考えると、試験期間が納得できないほど短い。確実にわかっているのは、私たちの治療は、何にもしないよりましという一点だけのようだ。研究者は患者の経験、視点、選択満足度を完全に無視している」。R Jobling, Chairman, Psoriasis Association

基礎研究から導かれた治療理論を確かめるのに、適切に設計された患者に対する試験を行わないことは、ありえません。しかし、しばしば、基礎研究の理論が患者に関連するかは調べられていません。遺伝子の欠陥が囊胞性線維症を引き起こすことを研究者が発見して20年あまりが過ぎましたが、この病気の人々は、いまだに苦しんでいます。いつになったら、患者は基礎研究の発見から医療上の恩恵を受けることができるのでしょうか。

研究が患者に直接関連するような場合でも、研究者が試験設計をする際には、しばしば患者の心配を見過ごすようです。分かりやすい例では、肺がん専門とする医師が患者の立場になり、患者として参加できる6つの肺がん試験について、自分だったら参加に同意をするかどうかと聞かれました。そうした医師のうち、36%から89%は参加しないと言ったのです。

同様に、全世界で1億2,500万人が慢性の皮膚障害に悩まされている乾癬の臨床試験においても、患者の利益になるものはほとんどありません。例えば英国の乾癬協会によれば、研究者らはさまざまな治療の効果を評価する際に、多くの研究で信じよう性が疑われている評点システムを使い続けていることが分かりました。この評点システムの欠陥の1つは、疾患の影響を受けている皮膚の全面積や、病斑の厚さの測定に集中していることです。その一方で患者は、顔、手、足の裏、性器の病斑で苦しんでいるのです。
キーポイント

- 不必要な研究は時間、努力、資金、その他の資源の無駄遣いである。そして倫理に反し患者に対して害となりうる。

- 過去の研究を最新の情報までレビューし、研究の必要性が示され、登録された場合に限り、新たな研究は進められるべきである。

- 新しい研究によるエビデンスは、以前のすべての関連するレビューを更新するものとして用いられるべきである。

- 多くの研究は質が悪く、疑わしい理由を根拠として行われている。

- 研究テーマは、産業界と大学からの歪んだ影響にさらされている。

- 患者にとって重要な疑問は取り上げられないことが多い。
第11章 公正な検証の実施は皆の責任

これまでの章では、治療の効果について不要な試験や悪い試験、すなわち患者にとって重要な疑問に答えない試験に、いかに多くの時間とお金、努力が費やされてきたかを示してきました。今後は治療に対するより良い検証が、患者、臨床医、一般市民そして研究者との生産的なパートナーシップから生じるべきであると、おわかりいただけたと思います。

患者と一般市民はどうしたら研究を改善できるか？

以前は閉鎖的だった医学界も、新鮮な考えとかつての「部外者」を受入れるため、そのドアを開けつつあり、パターナリズムも着実に減ってきています。その結果、医療研究における研究課題や研究方法について、患者と一般市民がより多くの貢献を果たしています1。全世界で、研究過程において患者がパートナーとして協力することへの支持が高まっていきます。また、患者と一般市民の参加を願う専門家に向けた有用な指針も存在しています2,3,4。

患者の選択を深め、見識を提供するための経験を持っています。患者自身の体験に基づく知識は、病気に対する人々の反応や、それがどのように治療の選択に影響するかについて、貴重なヒントを提供してくれます。アンケート調査5、研究報告の系統的レビュー1、個々の試験の報告書6そして影響力の調査7からの蓄積されたエビデンスは、患者と一般市民の参加が治療の試験の改善に貢献していることを示しています。多くの新規構想の中で、治療について最も有用なエビデンスを系統的にレビューする国際的ネットワークのコクラン共同計画（www.cochrane.org）は、1993年の設立当初から患者からの情報を採用していました。2004年に設立されたJames Lind Alliance

（www.lindalliance.org）は、患者、看護者と臨床医を集め、最も重要だと合意した治療の効果に関して、回答の出ていない質問を特定し、優先順位をつけています。治療の不確かさについて情報を提供することで、医療研究への資金提供者が、患者と臨床医にとって最重要事項を知るのに役立っています。

鍵となるパートナーシップ

「NHS（英国国民保健サービス）が実施する人に焦点を当てた研究は、単純に患者と市民の参加なしでは実施できない。

研究がどんなに複雑であろうと、どんな優秀な研究者が関わっていようと、患者と市民はいつも優れた、貴重な見識を提供してくれる。研究を設計、実現、評価する際には、彼らの意見によって試験はいつも、さらに効果的で信頼でき、さらにコスト効率の良いものになる。」

2008年の初め、欧州委員会は、臨床試験における患者団体の役割を推進するプロジェクトに資金援助しました。目的は欧州諸国内でのワークショップ、報告書そしてその他の交流を通して経験を蓄積することです。他の国においても、研究活動に市民の意見も積極的に取り入れることが一般的です。

市民の役割はさまざまな形で継続的に進化し、患者と市民が医療従事者とともに取り組むようになっており、そのための新たな方法が開発されつつあります（以下「患者と研究者との間に橋を架けること」および第13章「2.研究の設計および実施を適切に行う」を参照）11。これは研究活動のすべての領域にまたがり起きてています。

- 取り上げる質問の定型化
- どのアウトカムが重要かという選択も含めたプロジェクトの設計
- プロジェクト管理
- 患者情報冊子の作成
- 結果の分析と解釈
- 試験結果および治療の選択肢についての情報の普及と実行
患者の研究参加

患者の研究参加は、どのように実施されているのでしょうか。例として、第3章で、かつて乳がんの女性が受けていた過剰治療について、新たなタイプの臨床研究者と患者の両方が異論を唱え、変化に導いたことを示しました。臨床医と患者は、厳格な科学的スタンダードと女性の要求の両方を満たす研究エビデンスを確保するために協働しました。女性が乳房の根治的乳房手術に異を唱えた時、彼女たちはがんの根絶以外にも、考えるべきことがあったと示したのです。病気への効果的な対処方法を特定するための試験の際に、意見を述べる機会を要求しました。

共同で研究を担う形で患者や市民が参加を望めば、いくつかの方法があります。例えば、個人、または健康・病気の支援団体の一員として参加するのもよいでしょう。また意見収集のためのフォーカスグループ（定性調査）活動に参加してもよいでしょう。参加方法を問わず、彼方が研究の方法について知識を深めることは有用です。自信を持って効果的に医療従事者との協力に貢献できるようになるからです。そのためには、質の高い情報と彼らの役割に関連したトレーニングが必要となるでしょう。情報提供の方法が、特に統計の観点から、なぜ正しい理解のために重要なのかは第12章で説明します。もし私たちが患者の視点からの洞察と意見を受け入れ、協働する文化を発展させることができれば、そこにはまた患者と一般市民が、目立たなくても、研究の取り組みに貢献できる多くの方法があります。

今日、アクティブに研究にかかわる患者たちは、現状維持に対して意見や異議を述べることにためらわないで、そのために正確な情報が必要だと認識した初期の「パイオニア患者」の行動を感謝するかもしれません。例えば1970年代初期の米国では、Rose Kushner氏が率いる乳がん患者の小さなグループが、効果的な活動ができるよう、自己教育を始めました。そして、他の人たちの教育にも着手しました。乳がん患者で、フリーランス記者だったKushner氏は、1970年代初期に昔からの権威主義的な医師と患者との関係、および乳房胸筋を広範に切除する根治的切除手術の必要性に異議を唱えました12。
医療者ではない一般人がエイズに対する再考に導いた例

「エイズの領域では、多方面で信頼を得るためのせめぎ合いがあった。実際、普通では考えられないほど広範囲に渡った。そして、一般人が介在して科学的主張の宣言と評価を行ったことでエイズの知識が形づくられていった。同時にこのことで誰が『一般人』で、誰が『専門家』かという理解にも疑問を投げかけた。特定の知識を持つ者による主張と、患者代弁者のどちらが信頼できるのかが常に問題となった。より深いレベルで考えると、まさに信頼性をどのように評価するのかという問題である。誰がどのようにして科学的主張に判断を下すのか。（この研究が示すように）科学上の議論は、同時に科学そのものがどのような過程で誰によって行われるべきものかの議論でもある。」

彼女は根治的切除手術の効果に関するエビデンスを細かくレビューする本を書きました。世間からも認められ影響力を持った彼女は、10年後に、米国立がん研究所（NCI）で新たな研究に対する提案をレビューするようになりしました。同様に、英国でも、女性たちが情報に不足して立ち上がりました。例えば、1970年代に Betty Westgate 氏が Mastectomy Association（乳房切除術協会）を立ち上げ、1980年代には Vicky Clement-Jones 氏が BACUP（現マクシミリアンがんサポート団体の一部）を設立しました。

1980年代後半における米国の HIV/AIDS 患者は、病気について深い知識を持っていました。自分達の利益を守るため当局に対して政治的運動を起こし、患者が研究の設計に参加する道を開きました。患者の参加により、最終的には、研究で提供される治療の選択への患者のかかわり、また試験参加を促す柔軟性ある研究の設計をもたらしました。これに続き、1990年代初期に英国のエイズ患者グループは、ロンドンのチェルシー＆ウェストミンスター病院において研究に参加し、研究設計の構築に貢献しました。

こうしたエイズ活動家は、研究者に襟を正させました。患者活動家組織が起こした大混乱と見る研究者がいましたが、実際には、研究者による不確実な解釈に対する正当な挑戦でした。それまでの研究者のアプローチは、患者が望む成果を無視していました。一方で患者たちは、新しい薬の効果が厳密に評価される前に、「有望な」エイズ新薬の発売を要求したり、新薬の効果を示す試験を早めた判断をしたりする危険性を正しく理解するようになりました。研究者たちは、このような形での新薬の「人道的な早期の供給」は、単に現在と将来に患者の苦悩を長引かせるだけと主張したかもしれません。しかしながら患者たちは、じっくりとした管理下での実験の評価、協働による研究設計、さらに患者と研究者双方のニーズを考慮することが最終的に両者の理解を深めると反論しました。

1990年代に行われた1件のエイズに関する試験が、研究における患者の参加の重要性を示す鮮明な実例となりました。これはエイズ治療薬として、ジドブジンが導入された時代でした。病気の進行期の患者には、しっかりした有効性のエビデンスがありました。次にく
る疑問は、感染の早期にジドブジンを使用することで、病気の進行を遅らせ生存をさらに改善するかどうかでした。この可能性を試すための試験が、米国と欧州の両方で始められました。米国の試験は、可能性があるが有効性は不明確と判断した時に、早期に中止されました。米国での試験結果にもかかわらず、多数の参加者を得た欧州の試験は、患者代表者との同意のもと、最終結果が出るまで継続されました。結論は大きく異なったものでした。感染早期に用いられたジドブジンは何の利益も示していませんでした。試験で示された明確な影響は、望まれない副作用だけでした。

患者が治療法の公正な検証を危うくする例

研究に患者が参加することは、治療法の公正な検証の促進にいつも役立つというわけではありません。研究者に対して2001年に実施された調査で、患者が臨床試験に参加したことにより起因する非常に前向きな経験が明らかになりましたが、同時に深刻な問題があることも見出しました。ほとんどの、こうした形の共同研究への経験不足による結果でした。第一に、研究の開始にしばしば大きな遅れがありました。また利害の対立や、患者の「代表者」が試験運営会議に自分たちの利益だけを主張してはいけないことの必要性をまだ認識していなかったなどの懸念がありました。

これらの問題の多くは、研究がどのように行われ、資金が提供されるかについて患者の知識の欠如に起因したものと思われました。治療が絶望的な状況の時は、適正に評価されておらず、利益よりむしろ害をもたらすかもしれない治療を、死を前にした患者のためであっても使われるにいたという必死の努力を引き起こします。私たちは、患者と患者支援者がエイズの「有望な」新薬の「人道的使用」を働きかけることはマイナスであると考えています。それは、患者にとって重要なか結果を導く治療を見つけることを遅らせたのです。最近では、個人と患者団体の双方による誤った情報による逆効果の活動が、多発性硬化症と乳がんに対する薬の処方に影響を与えました。

1990年代の中ごろ、利益を示すわずかなエビデンスに基づき、緩再発・完全改善型の多発性硬化症を持った患者への治療にインターフェロンが導入されました。すぐに、あらゆる病状の多発性硬化症の患者たちがこの高価な薬を使うよう強く要求しました。そして英国国民保健サービス当局も、資金を出すことに同意しました。こうしてインターフェロンは、多発性硬化症の標準治療になりました。この結果、私たちは多発性硬化症に対し、どのようにインターフェロンを与えるのが適切かを解明しないままです。これまで一件の研究も実施されず、今となっては時計を戻すこともできません。しかしながら、時間の経過とともに明確になったことが1つあります。インターフェロンはインフルエンザのような症状を伴う、不快な副作用を持つということです。

私たちが第1章 p9～12で説明したように、ハーセプチン（トラスツズマブ）はすべての乳がんの女性に対し奇跡を起こす薬ではありません。まずその効果は、腫瘍の特定の遺伝子構造に左右されます。この遺伝子は乳がん患者の5人のうち、たった1人に存在するので
す。それに加えて、ハーセプチンには心臓に重大な副作用を発現させる可能性があります。患者の支援運動とメディアの熱狂があいまって、政治家も世論の流れる方向に動きました。ハーセプチンは、既存のエビデンスが乏しく、また有益性と有害性のバランスに関係するさらなるエビデンスが出ていないと認識されている状況にも関わらず、正式に承認されたのです。

おねだりと新薬

「新薬は本来不完全な商品である。安全性と効果、コストの影響に関する情報のすべてが明らかになっているわけではない。

『新しい』ものに対して熱狂的に支持する悪癖は新聞に限られたことではなく、ほかのメディアや医療および科学の世界でも多いことを知っておくべきである。

『おねだり』」は通常、子どもを対象とした広告に向けてられた概念である。ここで問うべき問題は、私たちが目にしているのは、患者の『おねだり』を期待した消費者に直接訴える広告だろうか。こうした広告で患者、慈善団体、そしてもちろん医師の意識を新薬に向け、その薬を販売せよと要求するようしむけているのか。もしこれが事実なら、私たちはこういったマーケティングを誰が操作しているのか、これが実際に医師と消費者の行動にどの程度影響しているのか、そしてそれが既存の診療規定で認可されているのかどうか知る必要がある。」

患者の組織：独立した意見を出しているのか否か

あまり知られていないもう1つの利益相反は、患者組織と製薬業界との関係にあります。ほとんどの患者組織は資金力が無く、ボランティアに頼り、自前の財源がほとんどありません。製薬会社からの助成金や共同プロジェクトは、こうした団体の成長を助け、より影響力のある存在となることができます。しかし、同時に研究テーマなどに関して患者団体の意図を偽ったり、歪曲したりすることになる場合もあります。
健康管理の向上のための市民関与

「支援団体、治療薬を販売する者、そしてそれを処方する者の利益は、合わさると影響力が強くなる。これは、たいていの場合、常に政策立案者を1つの方針に推し進めると、もっと多くの試験を、もっと多くの治療を、もっと多くの入院設備を、もっと多くの薬剤を…。

10年以上この分野で報告している者として、私は討論でしばしば抜けているのは真に公益を代表する声だと感じている。スポンサーのついた支援団体は新たな治療や技術を歓迎するのは早いが、その限定された効果、過剰なコストあるいは明確な危険性を公に批判するのは遅れる。そして多くのジャーナリストと同様に、政治家たちもまた、病気の定義を拡げ、最も高価な解決策を促す広告キャンペーンに信用を与えている上級医療専門家や熱心な支援団体の言いなりになってしまう傾向がある。

医療界に、科学的エビデンスは利用も誤用もされると熟知した新たな市民運動家があらわれれば、どこに優先して費用をかけるかについて、より良い議論を生み出してくれるかもしれません。そうした市民団体はメディアにおける誤解を招く広告を定期的に暴露することができ、市民と政策立案者に対しより幅広い医療戦略に関するリスク、利益、費用についてのより現実的で高度な評価を提供できるだろう。」

この問題の大きさを計ることは困難ですが、欧州医薬品局と協働する患者および消費者団体への企業資金援助調査で、興味深い結果が得られました。この欧州医薬品局は、全欧州で新薬の評価とモニタリングを調整しており、規制業務に関して積極的に患者と消費者団体を参加させています。しかししながら、2006年から2008年にかけて、そうした患者、消費者による23団体を調査したところ、15団体が一部または大部分の資金を医薬品製造業または製薬業界団体から受けていることが示されました。さらに、団体が受け取った金額、および出資元を正確に欧州医薬品局に答えられたのは、半数以下だったのです。

あるケースでは、製品についてロビー活動をする目的で製薬会社が患者団体を設立していきました。例えば、インターフェロンを製造するある会社は、英国国民保健サービス当局に多発性硬化症（上記参照）にインターフェロンを提供させる意図で、新たな患者団体「Action for Access（アクセスのための行動）」をつくりました。本当の問題は、インターフェロンが有益かどうかということのはずなのに、患者団体のメッセージは、インターフェロンは有効だが高価すぎるということだけでした。

113
患者と研究者との間に橋を架ける

これまで、治療の検証に患者が参加するようになった結果から生じる問題や、患者が無意識に公正な検証を危うくする事例について注意を喚起してきました。善意から行えば、不利益よりも利益が大きくなるという保証はありません。それでも研究者と患者が協働し、研究の調査の関連性とデザインを改善する利点の明確な事例があります。その結果、多くの研究者が、一緒に研究ができる患者を探しています。

協働による準備作業の価値の一例では、研究者らは緊急時に行う治療の検証に伴う難しい問題を、患者や患者予備軍の人々と検討しました。急性脳卒中の治療では、脳卒中が起きた後できるだけ早く治療を開始する必要があります。どのように進めたらよいか悩んだ研究者らは、患者と介護者に助けを求めました。研究者らは、患者団体と医療従事者による調査委員会をつくり、高齢者たちを含むフォーカスグループによる調査を行いました。その結果、試験計画は明確になり、試験情報の説明書の草案づくりや改訂を患者が助けました。

この徹底した予備調査により作られたランダム比較試験の計画は、研究倫理委員会より速やかに承認されました。フォーカスグループの参加者たちは、意識の混濁が残る、意識はあっても意思伝達ができなくなる急性の病気になった人から、インフォームドコンセント（医療行為への同意）を得ようとするこの倫理的ジレンマを認識していました。彼らは、すべての関係者が受け入れられる試験設計に導く解決策と、試験に関する説明書について大きな改善を提案することができました。

患者が患う病気について慎重に扱うべき側面を正式に調査し、また試験の実施方法を改善するために、社会科学者が試験チームに加わる例も増えつつあります。限局性前立腺がん男性に対する臨床試験では、研究者らは3つの全く異なる治療（外科手術、放射線治療または「注意深い待機」）を比較したいと考えました。しかしこれは試験をする臨床医にとっても、参加するかどうか決める患者にとっても困難をもたらしました。臨床医は「注意深い待機」という選択肢を説明することを非常に嫌い、最後に残しました。また説明の場で、患者を参加を考えている男性患者から拒否されるのではないかという誤った考えをもち、遠慮がちに説明していました。この問題について検討し、試験が本当に実現可能かどうかを判断するため、社会科学者に助けを求めました。

社会科学者の結論は意外なものでした。「注意深い待機」ではなく、「モニタリング」と表現し、患者に試験参加を勧める説明の際に後回しにせず、患者が理解できるよう注意深く説明すれば、「注意深い待機」を2つ目の治療選択肢に含めた臨床試験が容認できるということが示されました。

医者と患者との橋をかけるこの研究は、両者にとって困った問題があったのですが、それは治療選択肢の説明の仕方を改善することで、たやすく解決することができました。ある結果では、試験参加を勧められて参加を決めた男性の割合は、時間の経過とともに増
え、10人中4人から、10人中7人まで増加しました。参加患者をより早く集めたことで、限局性前立腺がんの男性に対するこれらすべての選択肢の効果が、こうした試験準備作業がされなかった場合よりも明らかに早く明白になりました。また、前立腺がんは罹患率の高い疾患であるため、今後、多くの男性が、以前よりも早期に恩恵を受けられるのです。

患者の参画が未来への明るい兆しとなる

患者と一般市民が治療の検証に参加する方法は沢山あります。これまでみてきたように、患者や市民こそが、理解のギャップや新たな方法を見つけることの必要性を特定できる中心的な人たちかもしれません。彼らのフィードバックを研究者がとりあげるかも知れません。ある段階で参加しても、別の段階では参加しない、あるいは不確定さを特定した段階から、周知や実施、さらにはプロジェクトの知見を系統的レビューの更新に反映させることができるかもしれません。また1つのプロジェクトでも異なる形で参画したり、彼ら自身がプロジェクトを始めることもあるでしょう。それは固定的な明確な規則はありません。異なる戦略やアプローチの中で、その研究に対する適切かどうかで選ばれるのです。前述の限局的前立腺がんの試験が示す通り、その方法は常に、たとえプロジェクトの過程でも進化していきます。

患者と研究者が共同で取り組むことは、治療の不確実性を低減する上で大きな力を発揮し、すべての人々に恩恵を与えます。個々の研究に適し、国の研究組織から認められ、支持を得たさまざまな方法で、こうした共同作業が可能になることが未来への明るい兆しとなります。
キーポイント

- 患者と研究者が一緒に取り組むことは、治療の不確実性を特定し、小さくする。
- 患者からの情報は、研究をより良く導くことができる。
- しかし患者によって、治療の公正な検証を不注意で危険させる場合もある。
- 患者団体と製薬業界の関係は、治療効果について偏った情報を生むこともある。
- 効果的な貢献のために、患者は研究についての総合的な知識と偏らない情報への迅速なアクセスが必要である。
- 研究に協働的に参画する「正しい方法」は1つではない。
- 患者の参画は、特定の研究目的に充てられるべきである。
- 患者参画の方法は継続的に発展している。
第12章 何がより良い医療をつくるのか

前章まで多くの例をあげて、治療が、患者にとって重要な疑問に焦点を当てて設計された適切な研究に基づいている理由、および、そうあるべき理由を述べてきました。一般市民、患者、医療従事者といった立場にかかわらず、治療効果は私たち誰も他の命に何らかの形で関わってきます。だから公正な検証に基づく堅実なエビデンスが重要なのです。

本章では、そうしたエビデンスがあらゆる医療の実践をかたち作り、医師と患者が治療について共同で意思決定するのに役立つかを見ていきます。良い意思決定とは、良いエビデンスの情報があり、別の治療方法で想定される結果についてもわかった上でなされます。しかし、これらの結果のもつ意味や価値は個々人によって異なります。そのために同じエビデンスを用いても、ある人は他の人とは別の意思決定にたどり着くかもしれません。例えば、「完全に」機能する指の定義が、プロの音楽家が求めるものと一般の人が求めるもので違うし、レストランのシェフにとっての良好な嗅覚、写真家にとっての良好な視力も違います。彼らは自分たちにとって極めて重要な結果を得るためにあらゆる努力を惜しまず、リスクも顧みない覚悟があります。エビデンスと意思決定の関係は複雑です。本章では主に一般的な場合に焦点を当てます。

とはいえ、その前に共同意思決定（shared decision making）について詳しく考え、医療実践においてそれがどのように使われるかを示しておきましょう。ここでの共同意思決定とは、プロである医療専門家によるパターナリズムと、患者に丸投げして結論を出させることを両極とした中間の道をとることです。患者はたいへん情報が全然足りないと不満をもつが、それも当然で、患者が自分の責任として受け入れることはひとそれぞれだからです。

共同意思決定

「共同意思決定とは、『患者が治療（診療）の意思決定に参画するプロセス』と定義されている。その理念とは、医療におけるほとんどの意思決定には不確実性があることを患者が理解できるように、専門家が問題について十分な明瞭性をもって率直に説明する（そうすべき）ので、患者はあい反する選択肢の中から正しい選択ができるということである。医師はその専門知識を使い、診断を下し、臨床上の優先課題にあわせて治療選択肢を特定する。患者の役割は、自分を取り巻く社会的状況に合わせて、自らの価値観と好みを見定め、それを伝えることである。」

中には自分の病気や治療法の選択肢について詳細な情報を得ようとせず、すべてを専門家に任せようとする患者もいますが、多くの患者はできるだけ知りたいと強く願っています。情報ももっと得たい患者には、適切に書かれた文献や、最も適した形での情報をどこで、どのように入手するかを助言できる経験豊かな医療従事者への迅速なアクセスが提供されるべきです。

「理想的な話し合い」がどんなものかも、人によって異なります。誰かに頼ることで満足する人もいれば、誰かの先に立ちたい人もいます。医師の励ましを受けて、積極的に意思決定に参加するのが最も利益が得られる方法で、一度経験した患者は、その後もこの方法を選びます。下記に示すように、患者が発する素朴な疑問によって対話が始まります。大事なことは、患者は自分の治療において、対等なパートナーとして扱われたときに、どの程度で問題が意思決定に参加したと感じるのです。

本書の考えはあなたにはどう見えるだろうか

2つとして同じ話し合いはありませんが、可能な限り最善の意思決定にたどりつくための原則は、本書に見られるものです。目指すべき目標は、患者と医療専門家が話し合いを終えた時に、入手可能な最良の関連したエビデンスのもとに話し合ったという満足感を得ることです。患者は医師に広汎な健康問題について相談します。短期的な問題、長期的な問題、命に係わる問題であっても、「ちょっと気になる症状」もあります。個々の患者の置かれた環境はみな違いますが、誰もが疑問を抱えている、どうしたらよいかを決めるには答えをもらう必要があるのです。

よくある膝変形性関節症（いわゆる疲労関節炎）という問題をめぐる患者と医師の診療相談の例で、説明しましょう。そこから、臨床で研究エビデンスをどのように使うかという基本的な問い、さまざまな症状を持つ患者が医療従事者に答えてもらいたいことは何かに進みます。本書の前章までを読んだ読者も同様の疑問を持つことでしょう。
医師と患者の対話とよくある間違い

共同意思決定

よくある症状での話し合いの例

医師： そうですね、両膝に軽度の変形性関節症がみられます。高齢になるとよくあることです。疲労関節炎とも言います。症状の進行は一定ではありません。軽快する時もあれば悪化する時もあり、年単位、10年単位での遅い進行です。今現在、どうお困りですか？

患者： あの、両膝を使いすぎると痛んで、何時間も痛みが続いてよく眠れない程です。最近になって痛みがひどくなってきたので、膝の人工関節置換手術が必要なので心配になりました。

医師： 膝関節の置換手術はたしかに1つの選択肢ですが、普通まず負担が少ない単純な治療から始めて、その効果が上がらない場合に初めて置換術を考えます。

患者： それでは、どんな治療があるのですか？

医師： そうですね、単に鎮痛剤と消炎剤だけで今の痛みは治まると思います。薬以外に膝周辺の筋肉を鍛える運動は、機能を維持し痛みを軽減するのに役立ちます。これらについてもっとお知りになりたいですか？

患者： 私の場合、鎮痛剤や消炎剤は胃に負担をかけるので、運動についてもっとお聞きしたいです。
医師：わかりました。運動方法を説明したパンフレットを差し上げましょう。それと、当院の理学療法士にみてもらうようにしましょう。鎮痛薬アセトアミノフェン（パラセタモール）なら、副作用もなく、安全に飲み続けることができますし、痛みをおさえて機能を保てます。

患者：ありがとうございます。他には選択肢はありませんか？

医師：重症の変形性関節症に対してはさらにほかの治療法もあります。けれども、あなたの今の状態なら、運動で筋肉をつけると着実に改善に向かうと思います。痛みが減り、よく眠れ、動きも徐々に良くなるでしょう。水泳や犬の散歩に頻繁に行くことも考えてみてください。筋肉が強くなるだけでなく、調子が良いと感じることが増え、体重維持もできます。一石三鳥ですよ！しばらくはこの運動と痛み止めで様子を見て、その後必要なら思い切った選択肢を考えることでいかがでしょうか。ただ、あまり良くなくなっていないと思われたら、いつでも遠慮なさらずにお越し下さい。

研究エビデンスを臨床に用いるにあたっての質問

質問１ 生命を脅かす病気の患者は、すべての治療を試す価値があるのではないでしょうか？

最新の「奇跡の薬」や、大手メディアが取り上げた有名人が体験した治療法、検証されていないが大々的に宣伝されている「代替医療」などについて、自分も試してみたいと思うこともあるでしょう。一般的な治療法は、平凡で効きそうにないと見えてしまうが、生命を脅かすような病気に対わされている薬のほとんどは、その効果も安全性も気が遠くなるほど細心の試験を経て検証されたものです。だからこそ、最初に最良のエビデンスを見つけたと、時間も、気苦労も、お金も節約できます。

一般的に医療では主流として、薬の有効性と安全性には一定の不確実性があることを認識しています。その不確実性を検証によって許容できる水準まで減らし、粗ずエビデンスを系統的にレビューして、提供する治療を向上させることを目指しています。こうした改善は、これが確実に進歩するための唯一の方法だと理解してくれる患者さんがことによって支えられています。

生命の危機に脅かされている患者は絶望し、検証されていない「治療」も含め、何でも試す気持ちになります。しかし、現時点で最良とされる治療法と、新しい治療法を比較する臨床試験への参加を考える方が、そうした患者にとってはるかに良い選択です。比較試験は新しい治療がどれだけ今以上の利益をもたらすかだけでなく、不利益を起こす可能性も明らかにするからです。生命を脅かす病気には強力な治療が必要で、そのような治療には副作用がつきものだからです。だからこそ、新しい治療は、本当に患者の助けになるか
どうかを見極めるために、綿密かつ公正に検証され、発見が系統的に記録されることが何よりも大事なのです。

質問 2 患者は治療が効くかどうか知りたいと思っても、そこまで詳しく知りたいわけではないのでは？

患者が適切なインフォームドチョイス（情報をもとにした選択）をするために、過剰に情報を与えない状態と、十分な情報を与えない状態との間で、適正なバランスをとるのが大事です。同様に、人は最初の段階ではある程度の情報しか必要としませんが、結論を導くのに利点と問題点を検討するうえで、次第に多くの情報を求めるということを覚えておくことも重要です。話し合いを通じて医師も患者も達成感があるのは、患者がある一定量の情報を得て、医師とともに現時点での最善の行動を選択できた時です。ただしこの終わりではありません。その後ゆっくり考えて、患者が疑問を持ち、もっと詳しく知りたくなった場合には、医師は患者が疑問に対する答えを見つけられるよう、また不確かな点を解消できるよう助けるべきです。

ある選択肢には困難な代償も含まれます。両方とも好ましくない選択肢から、ましな方を選ぶこともあります。例えば、第 4 章で心臓から出る最も太い血管にこぶができる大動脈瘤を取り上げましたが、これは致命的な大出血を起こす可能性があります。大きな手術で治せますが、100 人中 1～2 人は手術が原因で死亡します。つまり手術による早期死亡リスクと、後にくる致命的な血管破裂リスクのどちらを選ぶかの選択です。長い目で見れば、手術が良い選択ですが、患者にとっては合理的に考えた上で手術のリスクをとらない、あるいは少なくとも娘の結婚式といった大事な行事が終わるまで手術を延期するといった選択をするかもしれません。「これしかない」と思える解決策に目をつぶって飛び込むより、リスクを考えた上で、相応しいタイミングを選ぶほうが賢明だと言えます。

質問 3 統計は分かりにくいー患者は本当に数字を見ないといけませんか？

数字が出てくると非常に気が重くなります。また実際に、数字が誤解を与えることもあります。しかし、本当に2つの治療法を比較したいなら、また自分の状況が自分と同じような人にどう影響するかを知りたいなら、数字は避けて通れないものです。数字も、表現方法によってはわかりやすくなります。

一般向け（医師にとってはも！）に数字に意味をもたせる最良の方法は頻度を使うことです。つまり整数を使います。例えば、100 人中 15 人と表した方が、15%という表記より一般的に好まれます。これを文字だけでなく、図などで表示すると大変わかりやすいです。例えば色分けの棒グラフや円グラフ、数を表す人型マーク、笑顔や泣き顔の表情マークなどでもよいです。「数字」をこれらの「意思決定支援」手段と一緒に提示することで、多くのが、データの意味を把握できるようになります。ここに1つの説明方法として、高血圧を有する心疾患または脳卒中リスク患者における、10 年間の高血圧治療薬の効果を棒グラフで示します³。
あなたも含めて100人は今後10年でどうなるでしょうか？

高血圧で何の治療もしない100人のうち、13人が10年以内に心疾患か脳卒中を起こすと推測されます。この100人全員が血圧薬Aを服用した場合、心疾患や脳卒中は11人に発症すると考えられ、また2人は心疾患や脳卒中を予防できることになります。100人全員が血圧薬Bを服用した場合は、心疾患や脳卒中になるのは10人で、3人がこれらの疾患を発症せずにすみます。これなら、明快でしょう。それなのに、こうした単純な数値が、しばしば統計学者にしかわからないような書き方で報じられています。

では、同じ数値を、棒グラフを使わずに表にしてみましょう。この例では、良い治療、血圧薬Bに注目します。
まずは数値を、頻度で表し、そこから考えていきます。

<table>
<thead>
<tr>
<th></th>
<th>治療なし</th>
<th>薬 B 服用</th>
</tr>
</thead>
<tbody>
<tr>
<td>心疾患または脳卒中（10年間）</td>
<td>100人中13人</td>
<td>100人中10人</td>
</tr>
<tr>
<td>心疾患または脳卒中なし</td>
<td>100人中87人</td>
<td>100人中90人</td>
</tr>
<tr>
<td>合計</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

治療なしの場合の心疾患や脳卒中のリスクは13％（100人中13人）で、薬 B 服用の場合のリスクは10％（100人中10人）。この差は3％（100人中3人）です。薬 B の服用で、心疾患や脳卒中になったらどう13人のうち3人を防いだので、相対的リスク軽減率は3/13つまり23％です。すなわち治療によるリスク軽減率の絶対値は3％で、相対値は23％だと言えます。異なる2つの表現で、同じことを表しているのです。

相対的リスク軽減率はいつも高い数値になり、時には著しく高くなるため、注目を集めます。見出しに「23％の脳卒中リスクを回避した」とあっても、それには何の意味もありません。なぜなら調査対象となった特定の集団についても、調査期間についても、そして最も重要な無治療だった場合の脳卒中リスクが示されていないからです。これはおそらく相対的リスク軽減率です（でも確認する必要があります）。

数字は時に著しく異なります。前立腺がん検診に関する研究についての新聞報道を考えてみましょう。「20％死亡を減らせる可能性」は大きな数字に見えます。同じ結果はまた、1,410人をスクリーニングしたところ1人の死亡を防いだという形で記述されています（これは0.07％という極めて小さな数字です。スクリーニングを受けた10,000人の男性につき、7人の早期死亡を防いだという意味）。20％は相対的リスク軽減率で、0.07％は絶対的リスク軽減率です。前立腺がんは死亡率が低いため、後者の数字は極めて小さく、ニュースになることはないでしょう。結局のところ、あまりに楽観的な数字の見出しを目にしたら、それはたぶん本当に楽観的過ぎる主張なのです。
「あなたのコレステロール値が高い場合、50歳代で心臓発作を起こすリスクが50%高いでしょう。かなり悪い数字という印象だ。では、コレステロール値が高いと2%だけ心臓発作になるリスクが増えるとしよう。それなら大丈夫なように感じる。しかし、これは2つと同じことを言っている（架空の数値）。次のように考えてみよう。コレステロール値が正常な50歳代の男性100人のうち4人が心臓発作を起こすとされるが、それに対して、コレステロール値が高い男性100人のうち6人が心臓発作を起こすとされる。100人つき2人の心臓発作が増えたということなのだ。」

したがって数字は重要であり、十分な配慮のもとで提示された数字は意思決定の役に立ちます。患者は医師に対し、必要なら視覚に訴える資料なども使って、理解しやすい形で結果を説明してくれるよう踏まえることを求めるべきです。治療の意思決定が共同で行われるなら、医師も患者も数値が本当に意味するところを明確に理解している必要があります。

質問4 研究のエビデンスが自分にあてはまるかどうかどうやってわかるのでしょうか？

意思決定には、個人として、あるいは集団としてのそれまでの経験が影響してきます。ランダム化試験のような治療法の公正な検証は、単にそうした経験のバイアス（偏り）を最小化するように設計され、適切に構築されたものです。適切に構築されたかどうかかわかりやすく、どれだけ上手く過去の経験が次の人の助言を形作るかという点では、常に一定の不確実性が伴います。したがって、患者が、過去に公正な試験で試されたものと同じ症状や同様のステージ（つまり病気の進行度合い）ならば、その患者がよくどう見解をとるべきかという問題を考慮する必要はあります。

もちろん、そのエビデンスの適用内容は、人が皆違うのだから、違った反応をするのですよね？という質問をするかもしれません。治療の「公正な検証」が示すのは、単に、平均的に作用するかどうかなので、すべての人に等しく効くと保証することはまずありません。そして、誰が望まぬ副作用を経するかを予測することは難しいのが普通です。研究のエビデンスはどの治療が最も善かという見通しをつけるのに用いられ、その後、個人で検証されます。例えば皮膚の発疹では、エビデンスに基づく治療を身体の一部の皮膚で試し、他の部分の皮膚にも使って対照比較で検証します（第6章p61を参照）。2か所での反応を比較することで、医師も患者もどちらが効くか、あるは副作用があるかわかります。実際、顔のニキビ治療など、最初に皮膚治療をする際には、パッチテストで試すのが普通です。
ただ、大抵はそんなわかりやすい比較が簡単にできるわけではありません。痛みや痒みといった生命を脅かさない、慢性的な症状では、一人の患者で薬を使ったり、休んだりする期間を繰り返して試すことも可能です。この方法は、N=1試験と呼ばれ、参加者の数（n）が1人で、その1人に対して行われる試験を指します。このような患者1人に対する試験にも第6章で概説したバイアスのない、あるいは盲検結果解析などを含む公正比較原則が適用されます。理想的には、皮膚治療薬や飲み薬でもプラセボ（偽薬）対照群を用いますが、そうした試験の実施は難しいことが多いのです。

多くの症例について、「試してみて、様子を見る」とことはできません。結果が出るのが遅すぎたり、不確実すぎたりするからです。例えば、発症前に、アスピリンが患者の脳卒中を予防するかどうかは知りようがありません。これは予防薬のほとんどに共通する問題で、多くの急性期の治療でも同じことが言えます。髄膜炎、肺炎、ヘビ咬傷では、一人一人にテストしてみる機会はありません。他者の研究経験からそのエビデンスを適用するかどうか、そしてどのように適用するかを考えるしかないのです。

臨床で、もし、エビデンスがうまく適用できたなら、試験対象となった人との比較で患者的重症度（また現在、元気な場合は予測されるリスクレベル）を問うことが重要です。一般的に重症な患者ほど治療から得る利益は多いです。したがって患者の重症度が、試験対象で治療の恩恵を受けた患者の重症度と同等かそれ以上であれば、おおむね安心してこのエビデンスを適用することができます。病気がそれほど重症でない（あるいはまだ元気で相対的にリスクが低いと思われる）場合は、研究で示された利益よりもさらに小さい利益を得るために、治療する価値があるかどうかがポイントとなります。

質問5 遺伝子検査と「個別化医療」は、医師が個人別の治療を行うことになり、こうした検証試験は不要になるのではないでしょうか？

各個個人が必要とする個別化治療は疑いもなく魅力的で、ごく少数の病気ではあり得そうですが、この方法が治療の主流になるとは考えにくいでしょう。第4章p35で遺伝子検査について説明したように、大半の疾患はいくつかの遺伝子の複雑な相互作用だけでなく、さらに複雑な遺伝子と環境因子の相互作用にも要因があります。

遺伝子解析の結果は、ハンチントン病や地中海貧血（遺伝性血液障害）や他の（ほとんどのまれな）疾患などの遺伝性疾患を持つ家族や個人にとっては、重要な意思決定情報です。遺伝子情報はこのような状況の家族をカウンセリングする上で大きな利益をもたらしました。しかし、私たちがこれに関与するような一般的の疾患においては、家族歴と診察からすでに得られている情報に、遺伝子解析から得られる追加すべき情報はほとんどありません。こうした状況は変わっていくでしょうが、現在の限られた知識を考えれば、遺伝子解析に基づいて一般的な疾患のリスクを過大に解釈しないよう注意する必要があります。

私たち著者の中で遺伝子解析を受けた人は誰もおらず、受ける予定もありません。したがって、（1）家族歴により特定の既知の遺伝性疾患が疑われる、または（2）治療の効果
を遺伝子で明確に予測できる疾患として知られている少数の疾患でない限り、一般的には遺伝子検査は推奨されません。

質問6 現在臨床試験が行われている疾患を持つ患者は、主治医がその臨床試験について知らない場合、どのように臨床試験の情報を入手したらよいのでしょうか？（追加資料を参照）

臨床試験に参加するのは、医者にかかった100人の患者中わずか1人未満です。この割合は状態や状況によっても、大きく異なるでしょう。臨床試験が広く受け入れられ、実施されているがんセンターの中でも状況に大きな聞きがあります。小児がんの子どもはほとんどの試験に参加しますが、大人は10人中1人未満です。ほとんどの試験の参加は、患者が通う医療施設によって左右されます。もしその施設が試験施設に含まれていなければ、患者を参加させることはできません。その場合、患者は、臨床試験に参加している施設を探す必要がありますでしょう。数は少ないですが、患者が直接参加できる地域主体の試験もあります。例えば、うつや不安障害など精神的な問題を抱える人々を援助する方法を探す目的の研究などではよくみられます。また、最近ではインターネットで直接参加者を募る試験も出てきました。例えば、運動前のストレッチの効果を測定する最近の研究では、参加者全員がこの方法で集められ、彼らはクリニックに行くこともなくインターネットを通じて、すべての指示を受け取り、その後の追跡調査も受けています。

医者が患者の試験参加に消極的な場合、患者はその理由をつきとめるべきです。例えば、その患者が試験に適格ではないのかもしれません。しかし、試験が要求する煩雑な手続きがあるために、医者が先延ばしにしているだけかもしれません（第9章を参照）。現行の試験に参加する資格があると思う患者は、参加を希望すると主張するべきです。患者に適した試験が存在し、患者が強い参加意思を示しているなら、医師はこれを支援すべきです。

質問7（ネットなどで知った）エビデンスが信頼できるかどうかを判断する最良の方法は？何に気をつけばよいですか？

残念なことに、信頼できる情報を見分けるための、信頼できる簡単で完璧な目印などありません。もしかしたら自身で、その研究の原著論文を読むのなら、他の誰かの評価に判断を委ねることになります。そのため、その誰か（や組織）の能力を評価し、利益相反（あるいは利己的な感情）がないかどうかを見定めることが重要です。そうでなければ、最良の研究を見つけてそれを評価したものを信用できるか、自問することです。その研究についてきちんと記述され、参考文献が示されているでしょうか。

例えば、ベータカロチン（ビタミンAに関連）が、がんリスクを増すか減らすかについて知りたいとしましょう。グーグル検索で「ベータカロチン がん」で80万件以上も検索結果が出てきます。最初の10件を見ると、4つの主要な研究と6つのレビューや意見が出てきます。この6つのうち3つには、同じページにビタミンの広告や代替医療を掲載しています。怪しい徴候です。
その中で、質の劣る劣悪なウェブサイトではこう述べています。

質問：ベータカロチンはがんを防ぎますか？

答え：研究によりベータカロチンががんのリスク低減に役立つことが分かっています。ベータカロチンは黄色、赤色、濃緑色野菜や果物に含まれています。ベータカロチンサプリを摂取することで、それを含む果物や野菜をとるとの同じ効果があると考えられていました。しかしこれは当てはまりません。研究では、試験参加者で肺がんリスクが増しましたことがわかりました。

広告以外には、「研究」についての説明や、公表されたどの研究の何の記述を参照したかも何も書かれていません。これは怪しい徴候です。記者がこの「研究」を本当に調べて称賛しているのか、単に記者が気に入る結論にたまたま行きついただけなのか。判別するのは不可能です。これをウィキペディアにある説明（最初の10件にある）と比較してみましょう。

2007年JAMAに出版された、コクラン共同計画による科学論文のすべてのランダム化対照試験のレビューで、ベータカロチンで1〜8%死亡率が増加する（相対リスク1.05 95％信頼区間1.01 - 1.08）ことが示されました。しかし、このメタアナリシスは、2つの大規模な喫煙者研究を含んでいた為、一般の人に対する結果が当てはまるかどうかは明らかではありません。

この記載はエビデンスの型（ランダム化試験）および、引用（カッコ内の数字）を明示しています。広告がなく、特定のエビデンスについて詳細情報があるという事実は、安心感を与えます。

質問8 推薦できるような信頼できる情報源はありますか？（追加資料を参照してください）

すべての疾患や治療に関する唯一の情報源ということはありません。本書で説明した原則をもとに、読者の皆さんが情報を見る目を養うべきなかもしれません。例えば、本書の第6章〜8章に加えて「Smart Health Choices」という本は、良い情報を見つける方法や、どこに注意すべきかについてヒントをくれます。

いまあるウェブサイトでは、系統的レビューに基づくものはわずかです。系統的レビューのコクランデータベース（www.cochrane.org/cochrane-reviews）には、分かりやすく書かれた要約が含まれています。またIQWIG（ドイツ語ですが、英語版もあります）のウェブサイトもあります。さらに、必ずしも最良のエビデンスの系統的レビューに基づいているわけではありませんが、大抵は良い情報を提供しているサイトもあります。例えば、NHS
Choices（www.nhs.uk）やPubMed Health（www.pubmed.gov/health）で、質の高い情報を多く提供しています。
もちろんです注意すべきことは多くあります。特に利益相反については厳しく目の光らせるべきです。例えばその情報を信じる人々から金銭的な利益を得たり、何かを販売しようとするとなるサイトです。これを見破るのは難しいこともあります。例えば、第11章でふれたように、患者団体の中には公表せずに製薬企業の資金提供を受けている団体もあり、恣意的な情報を提供している可能性もあります。

質問9 人々が「病気」と分類されたり、必要のない治療を受けたりするのをどのように防ぐべきか？
医学は驚異的に進歩しました。感染症を防ぎ治療するワクチンや抗生物質、人工関節置換術や内臓手術、小児がん治療など数多くあります。しかし、その成功は、利益があまり分野にまで、医学にその手を伸ばすように促してきました。かなづちを手にした人には全世界が釘に見えてしまうように、新しい治療法を手にした医師には（製薬企業にも！）すべてが病気を見えます。例えば、糖尿病や高血圧のより良い治療が出てくると、医師はほんのわずかな異常でも、患者にそれを使うよう指示します。これで糖尿病や高血圧と分類される人の数が劇的に増加し、以前は正常と分類されていなかった人が「処方」の対象にされています。

なんらかの（ときに不必要な）副作用に加えて、この「病気と分類される」ことは心理社会的な結果をもたらします。個人の幸福感に影響し、雇用や保険では新たな問題まで引き起こします。それゆえ、患者や一般市民は、こうした事象の理解を深めることが、治療への同意を急ぐ前に、立ち止まり、利益と不利益のバランスをじっくり考えることで重要なのです。第4章で議論したように、スクリーニングはしばしば過剰診断で人を病気と分類し、人を病気と分類し、過剰治療の可能性を生む問題の原因になっています。
こうした問題から身を守るには、病気という分類に用心深い目を向け、調べてみることです。「正常な人とは今まで一度も病気を調べられたことがない人」というのは、冗談のようにですが、事実をついた面もあります。常にその病気が高いリスクなのか、低いリスクなのかを考えるべきです。前にも述べましたが、今すぐに何もなかったらどうなるのかを考えることです。どのように症状を観察し、どのような微候が出たら行動をとるのか。患者が今すぐに検査や治療を望まないと知って、ほっとする医師もいるでしょう。しかし大抵の医師は、分類のわなにはまり、分類＝疾患＝治療が絶対に必要と考えてしまい、症状が時間とともに良くなるか、悪化するか、しばらく様子を見ると言う対処を患者が歓迎するなどとは思わないのです。
誰が糖尿病なのか？

誰が糖尿病かをどのように決めているのか。私が医学生の時は、空腹時血糖値が140以上なら糖尿病という決まりだった。ところが1997年の糖尿病診断分類専門家会議で、異常値が再定義された。今は空腹時血糖値126で糖尿病とされる。このため、かつては正常と言われていた126－140の人が全員、糖尿病となった。この小さな変更で160万人が患者になった。

これは問題だろうか。そうであるとも、そうでないとも言える。私たちは決まりを変えたのだから、今はより多くの糖尿病患者を治療している。それにより新たな患者が糖尿病の合併症になるのを防ぐことができた。しかし、この患者たちは程度が軽いため、(126－140の比較的低い血糖値)そもそも合併症のリスクも比較的低かったのだ。

ここからどこに向かうのか

これまで、個人の心配や価値観、統計の理解とそれをどう個人に適用するか、軽い疾患に対しても治療を増やしていくことの問題点について述べてきました。これらはすべて患者と医師、あるいは医療分野と受益者である一般の人々とのより良いコミュニケーションの必要性を物語っています。この章で、異なる集団による協働を向上させていくための共同意思決定の議題をまとめたザルツブルグ宣言で締めくくりたいと思います。7。
ザルツブルグ宣言 共同意思決定について

すべての医療者に求めること

・ 患者と共同で重要な意思決定をするという倫理的な義務が課せられていることを認識すること

・ 双方向の情報の流れを奨励し、患者に質問を促し、彼らが置かれた状況を説明し、患者個人の嗜好を表明するよう促すこと

・ 治療選択肢や不確実性、利益と不利益について正確な情報を、最良のリスク伝達手法を用いて伝えること

・ 個々の患者のニーズに合わせた個別の情報を用意し、患者が選択肢を考えるのに十分な時間を与えること

・ ほとんどの意思決定は、即座に採用される必要はないと考え、患者や家族に考える材料を提供し、決定にたどりつくまで支援すること

医療者、研究者、出版社、ジャーナリスト等に求めること

・ 提供する情報が明快で、エビデンスに基づく最新のもので、利益相反を明示することを保証する

患者に求めること

・ 知りたいこと、疑問、自分たちにとって何が大事かを正しく伝えること

・ 自分のケアにおいて平等な参加者としての権利があると認識すること

・ 質の高い医療情報を探して利用すること

政策担当者に求めること

・ 改善を誘引する意味でも、測定を含む共同意思決定を促す方針を採用すること

・ インフォームドコンセント法を改正し、共同意思決定の実現のためにスキルやツールの開発を支援すること
なぜなら

- 患者が受けるケアの大半は、それを提供する個々の医療者の能力と習熟にかかっており、最善の医療実践で広く認められた水準や、治療に対する患者の嗜好にはよらないからである。

- 医療者は、患者がどこまで自分の健康問題について理解し参加したいと思っているかを認識するのが遅い。患者は選択肢を知り、自分の嗜好が考慮される意思決定をしたいと思っている。

- 多くの患者や家族は医療の意思決定に積極的に参加するのが難しいと考えている。自信がなくて医療の専門家に質問できない人もいる。健康とその決定要素についてごく限られた知識しかなく、明瞭で信頼できる、わかりやすい情報をどこで見つけられるのかも知らない。
第13章 正しい理由に基づく研究：より良い未来のための青写真

医学研究は、間違いなく生活の質（QOL）の向上と寿命の延長に貢献してきました。しかし、本書では、臨床研究に対する今の商業的および学術的な牵引力は、患者の最も求められるものを特定し十分にそれに応えているとは言えない、ということを述べてきました。

世界中で毎年1,000億ドルを超える膨大な金額が、医学研究の資金に費やされています。しかし、この資金の大部分は、患者に関連するエビデンスを早急に示す可能性の高い試験ではなく、実験室や動物実験に使われています。

治療効果について何を調べるべきか決めるときでさえも、患者の優先事項は全くと言っていいほど考慮されません。製薬会社の資金力は研究内容の選択に大きな影響力をもっています。なぜなら製薬会社は、臨床研究に参加する患者に対し巨額の費用を負担できるので、大学病院も、研究者が所属する機関も、患者ではなく製薬業界が関心ある研究テーマの臨床試験を行うからです。

残念ながら、医学研究に費やされた資金の多くは、間違ったリサーチクエスチョン（研究疑問）であったり、不必要あるいは設計に不備がある試験、研究結果のすべてを公表あるいは利用可能にしない、バイアスがある、あるいは役に立たない研究報告書を作成することに浪費されています。これは、研究者、研究資金提供者、臨床医、納税者そしてとりわけ患者と、すべての人に関係します。より良い未来のための青写真を描く前に、研究をより良いものにするための重要な事項を簡潔にまとめてみます。

1. 正しいリサーチクエスチョン（研究疑問）を設定する
2. 研究の設計および実施を適切に行うこと
3. 研究結果をすべて公表してアクセス可能なものとすること
4. 偏りがなく、かつ役に立つ研究結果を作成する
1. 正しいリサーチクエスチョン（研究疑問）を設定する

時に医師は、選択肢となる治療法が適切に研究されていないために、どれが患者にとって最善の治療法かわからないことがあります。患者のケアに大きく影響する可能性のあるものでも、製薬業界や研究機関にとって関心度が低いと、重要な疑問も答え出されないままになります。こうした状況を放置することは、計り知れない規模の損失につながりかねません。一例をあげてみましょう。身体的外傷による脳損傷のある患者にステロイド治療薬を投与することが生存可能性を左右するかどうかという疑問です。何十年もステロイド薬が治療に使われていたが、紛れに設計された研究により、ステロイドが何千人という脳損傷を受けた患者を死に至らしめていた可能性があると示されました。当初、この研究を進めるとついて、製薬業界および大学の研究者たちは強く反対していました。なぜでしょうか？それは、彼らが患者にどれだけ重要か疑問だった高価な新薬（いわゆる
神経保護剤）の効能について、患者に与える影響に関する臨床試験を実施していたため、
試験に参加する患者確保で競争をするのを嫌がったからです。

答えの出ている疑問に対する研究を進めるもう1つの理由は、医療に費やす貴重な資源
が無駄に使われないことを確実にするためです。やけどやその他の重症患者の蘇生に使う
ため、ヒト血清由来のアルブミン点滴薬が1940年代に導入された際、理論上は死亡率を低
下させると言われていました。驚くことに、この理論は1990年代まで公正に検証されてい
ませんでした。この時点での関連する複数のランダム化試験の系統的レビューから、ヒト
血清由来のアルブミン点滴薬が生理的食塩水と比較して、死亡率を下げるというエビデン
スは見つかりませんでした。むしろこの系統的レビューで明らかになったのは、アルブミ
ンが死亡リスクに影響を及ぼすとしたら、死亡率を上昇させるということでした。この論
文における発見で、オーストラリアとニュージーランドの医師が、初めてアルブミンと蘇
生で代替的に使う生理的食塩水を公正に比較する大規模な共同研究を行いました。本来
なら半世紀前に行われるべきだったこの臨床研究も、アルブミンが塩水に比べて効果が
あるというエビデンスを結び出せずに終わっています。アルブミンは塩水の約20倍も高価
だったため、それ以前の50年間あまり、世界中で多額の医療費が無駄に使われたに違いない
ありません。

2. 研究の設計および実施を適切に行う

臨床試験結果の多くが精度の低いものであることを示す論説が数多く出た影響を受け、
臨床試験の論文の品質基準が引き上げられ適用されるようになりました。この基準では、
どれだけ多くの患者が臨床試験への協力を要請され、どれだけの患者がそれを断ったら明
確にすることを求めます。また試験結果は、開始時に割り付けられた治療群で示されます。
しかしこの問題が残されています。その課題とは、(a)臨床試験のテーマ（研究
すべき疑問）の選び方、(b)検証対象とした治療の結果が、患者が重視する結果と一致
するようにテーマが決められているかどうか、(c)患者が情報を入手できるかなどです。
(第11章および第12章を参照)

計画された臨床試験が実施可能で、受け入れられるものかどうかを確かめるには、患者
集団を含めた予備調査を行うことが効果的かもしれません。この予備調査は臨床試験の設
計計画の欠陥を浮き彫りにする、もしくは、より関連性のあるアウトカムを定義するよう
手助けする、さらにはその臨床試験の構想そのものに必要性がないことまで示唆するか
かもしれません。

これによって時間、費用、そして心労を軽減することができます。例えば第11章p114
で解説した前立腺がん患者の臨床試験は、患者に対して医療従事者が試験の目的および治
療の選択肢を説明する上で、慎重に検討して言葉の表現を変更した結果、試験設計が改善
した一例です。患者の視点からの検討が、納得のいく試験につながったのです。すなわち、
臨床試験への参加対象となる男性がもつ懸念や必要とする情報を特定することにより、こうしたことを踏まえて試験参加の候補者に情報提供したことが効を奏しました。

3. 研究結果をすべて公表してアクセス可能なものとする

試験結果を選ぶして公表することは、深刻な情報の偏りにつながりかねません。臨床試験のうち「失敗」と呼ばれるものは、協賛企業や研究者の期待にそぐわない結果に終わるために、その調査結果は暗に葬られるのです。公表された文献がない限り、このような臨床試験は跡形もなく消し去られてしまいます。さらに言えば、公表されている臨床試験結果の中身も選別されたものである可能性があります。すなわち、検証対象の治療についてそれほど「成功」とは言えない結果は排除されているのです。治療の効果について、このような偏った臨床試験結果の情報のせいで、苦しんだ患者、死に至った患者がいることを忘れてはなりません。この慣例は非科学的であると同時に極めて非倫理的です。

4. 偏りがなく、かつ役に立つ臨床研究報告をする

臨床試験結果が公表される場合でも、しばしば重要な要素が抜け落ちていて、読者が結果を判断できなかったり、適用できなかったりします。2000年12月に、信頼ある学術誌に掲載された519件のランダム化試験の結果に関する論文についてレビューしたところ、82%は割り付けの秘匿方法が説明されておらず、52%は観察者のバイアスを低減する対策についての詳細な情報を与えていませんでした。この2点はまさに第6章で触れた、有効な試験結果には欠かせない要素です。詳細な情報を欠いた質の低い試験報告問題点は、試験で使われる治療方法の説明についても同様に言えることです。例えば過敏性腸症候群患者の試験では、患者に具体的な説明冊子を提供したことが（冊子を提供しない場合と比べ）役立ちました。冊子から説明情報が抜け落ちていた、あるいは詳細情報が入る冊子を入手する方法が抜けている場合、他の患者や医師にはその「治療」を利用することができなくなってしまいます。これは主要学術誌に掲載された臨床試験分析評において示された、臨床試験結果の1/3では必要不可欠な情報が欠落しているという問題のほんの一例にすぎません。

最後に、公表されている臨床試験結果の多くは、それに先立つ類似する臨床試験結果の公表結果と関連させた形をとっていません。第8章で説明した通り、このような重要な工程を経ないとき、その臨床試験結果が本当に意味することを理解できなくなってしまいます。あらゆるランダム化試験の結果に対して4年ごとに検証した結果が、1997年から2009年にかけての12年間に、5つの主要学会誌に掲載されましたが、このなかで上記問題の大きさがはっきりと示されています。全体を通じて、94件中25件（27%）の臨床試験結果しか、それと類似する臨床試験の系統的レビューを参照していませんでした。新たな結果を反映したレビューの更新が含まれ、既存のエビデンスに新たな結果がどのような違いをもたらすのかを記していたものは94件中わずか3件のみでした。悲しいことに、今でもこの臨床試験結
果の報告に関する水準が改善されたというエビデンスはありません。この不備により、医療従事者がたまたま目にした学術誌によって、異なった治療方法を使うことになりかねません。

より良い未来に向けた青写真

臨床試験は適切な目的のために実施され、その結果を適切に公表することができるものです。個別にみれば、下記の提案は目新しいものではありません。この全部について、患者と医療従事者と共同して取り組むなら、私たちの8つの行動指針は治療の試験と利用について、より良い未来の青写真となるはずです。

1. 治療効果の主張の信ぴょう性を判断するために幅広い知識を身につけること

変化への条件は、バイアスや偶然のいたずらが、治療効果のエビデンスを大きく左右するということを、一般市民が十分に認識することです。現在、バイアスを認識し、最小限にするという、科学的検証における最も重要な特徴は「一般常識」としては認識されていません。私たちはこうした理解を高めるために、より決意を持って効力を重ねる必要があり、これらの考え方を初等学校教育から繰り返し教えるべきです。

2. 治療効果のエビデンスに関する系統的レビューを準備、維持、普及させる能力を向上させることが

治療効果に関する疑問は、多くの場合、すでに存在するエビデンスに対する系統的レビューを実施し、その系統的レビューを常に最新のものに更新し続け、専門家および患者にその情報を効果的に広めることによって簡単に証明できていきます。とはいえ、系統的レビューの中で既存のエビデンスからの情報が簡単に入手できるようになるのはまだ先のことです。治療効果について信頼性の高い情報を構築し、入手しやすい環境をつくるために、系統的レビューの整備に基づき組むことが、医療システムの命題の1つと言えるでしょう。

3. 治療効果に不確かな点がある場合には、誠実にそのことを認める勇気をもつこと

不確実性を認めることは医療専門家にとってしばしば難しいことであり、ときに患者に嫌がられることがあります。結果、患者は場合によっては偽りの安心感を与えられ、エビデンスに存在する不確実性を知られないのであります。もし医療従事者と患者がともに治療効果に関するエビデンスの検証に効果的に取り組むとすれば、両者ともに十分に検証・評価されていない治療は深刻な害を及ぼす可能性を認識し、信頼できるエビデンスの構築に必要な試
験方法について知る必要があるでしょう。私たちはこのことを広く一般に認識させるための最善の方法を模索する必要があります。

4. 患者と臨床医にとって重要な臨床研究を明確にして優先順位をつけること

研究資金提供者と研究機関が取り組んでいるのは、患者にとって近い将来役に立つもののとは言いがたい基礎研究や、産業界に利益を生み出す研究ばかりです。お金にならないけれども患者にとって重要な研究は、たとえ公的に研究活動を支援されている場合でも資金集めに努力しなければならないのです。患者と医療従事者が関心を向ける治療効果に関する研究にこその力を入れるように取り計らうべきであり、研究資金提供者においては治療効果の確実性をあげるための臨床研究こそ優先すべきです。

5. 治療行為の合意に関するダブルスタンダードと向き合うこと

治療効果の不確実性を認める勇気があり、きちんとした治療比較の中でそれに言及する医療従事者は、そうでない人よりも、患者対応でより厳しい規則を課されることがあります。この曲があったダブルスタンダードは非論理的であり弁護の余地がありません。治療効果に確実性がない場合、ランダム化試験あるいは偏りがなく精度の高い他の研究に参加することを標準とすべきです。臨床研究の被験者となることは必ずしも危険な行為ではないことを保証すべきであり、そうした「標準」的医療行為は常に効果的であり安全であることを示唆する必要があります。

6. 研究組織の無効率を克服すること

驚いたことに、研究者が新たに臨床研究を行う際に、支援を募り、倫理審査を受けるにあたっても、何が既存の知識か系統的に調査することを義務付けられていません。結果、設計に問題があり、端的に言って必要性の低い臨床研究が大量に続けられるという倫理的にも科学的にも許されない状況になっています。私たちは、研究資金提供者および臨床研究の倫理委員に対して、既存のエビデンスに関連する系統的レビューを参照していないような研究者に新たな試験を開始させないよう圧力をかけるべきです。新たな臨床研究の論文は、まずその研究を追加する必要性を説く系统的なレビューに言及するところから始め、新たな研究結果が現存するエビデンスの完全性に与えた影響で締めくくるべきです。

7. 偏りのある論文を公表するという慣例を禁止すること

偏りのある論文の発表を根絶するため、臨床研究の初めと終わりに対策をとる必要があります。試験開始時には登録記録をとり、試験研究計画も調べられるよう閲覧可能にすべきです。試験終了時には、すべての試験結果を公表し、今後の調査や分析に使えるよう元のデータも閲覧可能にすべきです。
8. 利益相反に関する情報の透明性を要求すること

研究計画、研究工程の管理、分析、研究内容の解説そして研究内容の実践の各段階において、時には患者の利益よりも、財政的その他の利益が優先しているという数多くのエビデンスが示されています。臨床研究を患者の利益により効率的に応えるものにする上で、このことは相互信頼を打つ壊しかねません。営利企業から患者の圧力団体に至るまで、臨床研究に関わるすべての利害関係者は、患者の利益に資すること以外に、得た利益について公表することが義務付けられるべきです。

今求められている行動

臨床研究における革命は、長い間先延ばしになっています。医療専門家と患者がともに行動すれば、私たちの提案はすぐに実行できるものです。読者であるあなたも、ぜひ変革を手伝ってください。今すぐに。
行動計画—あなたにもできること

あなたにとって大事な治療効果に関する疑問を明確にすること
不確実性を認識することを学ぶ。声をあげ、質問し、誠実な回答を求めること。
遠慮せずに、どのような治療法があるのか、特定の治療法を選んだ場合に何が起こり得るか、選ばなかった場合には何が起こり得るかを、遠慮せずに医師に尋ねること。
治療方法を検討する際には、www.ohri.ca/DecisionAidに掲載されている意思決定ガイドの情報を役立ててほしい。（追加資料「共同意思決定に関する詳細について」も参照）
NHS Choices (www.nhs.uk)など信頼できるウェブサイトを利用すること。（第12章および本書追加資料を参照）
根拠なき主張やマスコミの「画期的治療」報道、マスコミの「数字」の報道のしかた、特に見出しに現れる大きな数字に対して、健全な猜疑心を持つこと。
自分または家族に対して、信条や教義に基づいているが、信頼できるエビデンスで証されていない治療を提案された時には、異論を唱えること。
不必要に病気に「分類」され、過剰な検査を受けないよう気をつけること（第2章と第4章を参照）。疑われる「病気の分類」が自分にとって高リスクなのか、低リスクなのか見定めること。すぐに対処しない場合はどうなるか尋ねること。
以下の条件が満たされる場合に限り、臨床試験に参加すること。（1）研究計画が登録され、公に入手可能になっている、（2）研究計画では既存のエビデンスに対する系统的レビューを参照しており、試験をする正当性がある、（3）すべての研究結果を公表し、希望する試験参加者にも配布することを文書で保証されている。
あなたが重要と思う治療効果に関する疑問に十分な答えを得られていない事柄について、研究に取り組むよう医療専門家、研究者、研究支援者を促し協働すること。
偏りのある情報や、偶然により起こる影響ついての教育の普及を促すこと。小学校から教育内容に取り入れるよう議員や関係者に働きかけること。
参考文献

序文

はじめに

第1章 新しいこと—それは良いことなのか？

7. Lehman R, Yudkin JS, Krumholz HM. Licensing drugs for diabetes: surrogate end points are not enough, robust evidence of benefits and harms is needed. BMJ 2010;341:c4805.

第2章 期待される効果が達成されていない

第3章 多ければ良いと限らない

7. Clinical Trial Service Unit website: www.ctsu.ox.ac.uk.

第 4 章 早ければ良いとは限らない

10. Heath I. It is not wrong to say no. Why are women told only the benefits of breast screening and none of the possible harms?BMJ 2009;338:1534.

第5章 放射線検査の不確実性にどう対処するか

第6章 正しい治療の検査について

第7章 偶然性を考慮する

第8章 信頼できる関連エビデンスをすべてレビューすること

第9章 臨床試験への規制はどこまで必要か

第 10 章 良い研究、悪い研究、そして不要な研究

第11章 公正な憲章の実施は皆の責任

第 12 章 何がより良い医療をつくるのか

第 13 章 正しい理由に基づく研究：より良い未来のための青写真

追加資料

DO YOU WANT FURTHER GENERAL INFORMATION ABOUT TESTING TREATMENTS?
（治療法の検証についてさらに概説を読みたいですか？）

ウェブサイト

インタラクティブな治療法の検証

www.testingtreatments.org is where you will find a free electronic version of the second edition of Testing Treatments, and where translations and other material will be added over the coming years. Translations of the first edition of Testing Treatments are available at the site in Arabic, Chinese, German, Italian, Polish and Spanish. James Lind Library

www.jameslindlibrary.org
Cochrane Collaboration
www.cochrane.org
NHS Choices
www.nhs.uk (enter 'research' in search window)
UK Clinical Research Collaboration
www.ukcrc.org
Healthtalkonline
www.healthtalkonline.org
US National Cancer Institute
Educational material about clinical trials
http://cancertrials.nci.nih.gov/clinicaltrials/learning

書籍

Ben Goldacre

DO YOU WANT INFORMATION ABOUT WHAT IS KNOWN ABOUT THE EFFECTS OF TREATMENTS?

Cochrane Library
www.thecochranelibrary.com
NHS Evidence
www.evidence.nhs.uk
Informed Health Online
www.informedhealthonline.org
PubMed Health
www.pubmed.gov/health

DO YOU WANT INFORMATION ABOUT WHAT ISN'T KNOWN ABOUT THE EFFECTS OF TREATMENTS?

UK Database of Uncertainties about the Effects of Treatments (UK DUETs) www.evidence.nhs.uk

DO YOU WANT INFORMATION ABOUT CURRENT RESEARCH ADDRESSING UNCERTAINTIES ABOUT THE EFFECTS OF TREATMENTS?

WHO International Clinical Trials Registry Platform
www.who.int/trialsearch
US National Institutes of Health Clinical Trials Registry
www.clinicaltrials.gov
EU Clinical Trials Register
https://www.clinicaltrialsregister.eu
Australian Cancer Trials
www.australiancancertrials.gov.au

DO YOU WANT TO BECOME INVOLVED IN IMPROVING THE RELEVANCE AND QUALITY OF RESEARCH ON THE EFFECTS OF TREATMENTS?
James Lind Alliance
www.lindalliance.org
Promotes working partnerships between patients and clinicians to identify and prioritize important uncertainties about the effects of treatments.
National Institute for Health Research
NIHR Health Technology Assessment
www.ncchta.org
Actively involves service-users in all stages of its work.
NIHR Clinical Research Network Coordinating Centre
www.crncc.nihr.ac.uk/ypi
Keen to involve patients, carers, and the public in volunteering for clinical studies and getting actively involved as researchers.
Cochrane Consumer Network
www.consumers.cochrane.org
Promotes patient input to systematic reviews of treatments prepared by the Cochrane Collaboration.
UK Clinical Research Network
www.ukcrn.org.uk

DO YOU WANT TRAINING IN ASSESSING RESEARCH?

Critical Appraisal Skills Programme
www.casp-uk.net
Organizes workshops and other resources to help individuals to develop the skills to find and make sense of research evidence.
US Cochrane Center
Understanding Evidence-based Healthcare:A Foundation for Action
http://us.cochrane.org/understanding-evidence-based-healthcarefoundation-action
A web course designed to help individuals understand the fundamentals of evidence-based healthcare concepts and skills.

DO YOU WANT TO KNOW MORE ABOUT SHARED DECISION-MAKING?

DECISION-MAKING?
The Foundation for Informed Medical Decision Making
www.informedmedicaldecisions.org
Dartmouth-Hitchcock Medical Center:
Center for Shared Decision Making
http://patients.dartmouth-hitchcock.org/shared_decision_making.html
DO YOU WANT TO LEARN ABOUT SYSTEMATIC REVIEWS OF ANIMAL RESEARCH?

www.sabre.org.uk
www.camarades.info
ビネットリスト

はじめに

p. xviii 過信してはいけない
Xenophanes, 6th century BCE
Charlie (‘Peanuts’) Brown, 20th century CE
Susser M. Causal thinking in the health sciences.

第１章 新しいこと - それは良いことなのか？

p. 2 体験談はしょせん体験談である
Ross N. Foreword. In: Ernst E, ed. Healing, hype, or harm?
A critical analysis of complementary or alternative medicine.

p. 4 新生児の悲劇的な失明が流行
Silverman WA. Human experimentation: a guided step into the

p. 9 大混乱に巻き込まれる
Cooper J. Herceptin (rapid response). BMJ.

第２章 期待される効果が達成されていない

p. 14 混乱するのも無理はない
Huntingford CA. Confusion over benefits of hormone replacement therapy.

第３章 多ければ良いとは限らない

p. 18 医師の医療の根拠とは
Parmar MS. We do things because (rapid response). BMJ.
過激な治療が常にベストとは限らない

古典的（ハルステッド）拡大乳房切除
Extended radical mastectomies
Adapted from Lerner BH. The breast cancer wars: hope, fear and the pursuit of a cure in twentieth-century America.

ランダム割り付け - 簡単な説明

公正なエビデンスのための闘争
Adapted from Kolata G, Eichenwald K. Health business thrives on unproven treatment, leaving science behind.

第4章 早ければ良いとは限らない

「人」から「患者」へ
Cochrane AL, Holland WW. Validation of screening procedures.
British Medical Bulletin 1971; 27:3-8.

早期発見は受ける価値があるものという思い込みは禁物
Morris JK. Screening for neuroblastoma in children.
Journal of Medical Screening 2002; 9:56.

前立腺がんの過剰診断
Chapman S, Barratt A, Stockler M. Let sleeping dogs lie?
What men should know before getting tested for prostate cancer.
Sydney: Sydney University Press, 2010: p25

PSA 発見者の見解

検診の売り込み
Woloshin S, Schwartz LM. Numbers needed to decide.
自分の遺伝子で掛けをしない

検診サーカス団

第5章 治療効果の不確実性にどう対処するか

段階的な進歩は一面の記事には載らない

不確実性に立ち向かう／生と死にまつわること

プロフェッショナルとは不確実性に対応する人

From: Medical Research Council response to Royal College of Physicians consultation on medical professionalism, 2005.

処方時の見込みについて話す2人の医師

患者は不確実性に対処することができるか？

第6章 正しい治療の検査について

治ったことを誤解する
James Stuart, King of Great Britaine, France and Ireland. A counterblaste to tobacco. In: The workes of the most high and mightie prince, James. Published by James, Bishop of Winton, and Deane of his Majesties Chappel Royall. London: printed by Robert Barker and John Bill, printers to the Kings most excellent Majestie, 1616: pp 214-222.

p 55 信じるものが見える

p 67 イエローカードスキーム

第 7 章 偶然性を考慮する

p 73 「統計学的に有意」とはどういう意味か

第 8 章 信頼できる関連エビデンスをすべてレビューすること

p 76 なぜその試験を行ったか？

p 77 研究から得た情報を統合する

p 78 系統的レビューの重要性

p 79 マーケティングに基づく医療

p 82 科学は累積的なものなのに、科学者は科学的に証拠を蓄積することをしない

p 84 最初に過去のエビデンスを調べることで死亡を防ぐことができたか?

p 85 医学雑誌「The Lancet」の編集者による、著者への研究成果を文脈に入れる

第 9 章 臨床試験への規制はどこまで必要か

p 87 誰が医療研究があなたの健康に悪いと言うのか

p 89 理想的な社会では

Goldacre B. Pharmaco-epidemiology would be fascinating enough even if society didn’t manage it really really badly. The Guardian, 17 July 2010. Available online: www.badsidne.net/2010/07/pharmaco-epidemiologywould-be-fascinating-enough-even-if-society-didnt-manage-it-reallyreally-badly

p 90 偏った倫理

Lantos J. Ethical issues – how can we distinguish clinical research from innovative therapy?

American Journal of Pediatric Hematology/Oncology 1994; 16:72-75）
インフォームドコンセントについて改めて考える

良い医療行為における常識的なインフォームドコンセントの取り扱い
Gill R. How to seek consent and gain understanding. BMJ 2010;341:c4000.

学術的探求か分別ある選択か

研究規制はどうあるべきか

第10章 良い研究、悪い研究、そして不要な研究

Magpie 試験を経験して

カナダにおける“ME-TOO”薬のインパクト

医師と製薬会社

怪しく、詐欺的で、騙すもの？

必要なのは、遺伝子を見つけること

乾癬の患者は研究の恩恵を受けていない
第11章 公正な憲章の実施は皆の責任

p 107 患者の選択：ダビテとゴリアテ

p 108 鍵となるパートナーシップ

p 110 医療者ではない一般人がエイズに対する再考に導いた例

p 112 おねだりと新薬

p 113 健康管理の向上のための市民関与

第12章 何がより良い医療をつくるのか

p 117 共同意思決定

p 124 目を奪う数字に踊らされるな

p 129 誰が糖尿病なのか？
キーポイントの一覧

第1章 新しいこと―それは良いことなのか？

• 新しい治療法の検証は必要である。既存の治療法よりも優位性がある可能性と同様に、悪影響をもたらす可能性もある。
• バイアス（偏り）があって公正さを欠く検証は、患者の苦悩や死につながる可能性がある。
• その治療が認可されていることは安全であることを保証することではない。
• 副作用が現れるまでは多くの場合、時間がかかる。
• 治療の有益な効果はしばしば誇張され、有害な効果は軽視される。

第2章 期待される効果が達成されていない

• 学説や専門家の意見は、安全で効果的な治療法への信頼できる指針ではない。
• 治療法が「確立されている」という理由だけでは、有害性よりも有益性が上回るとは限らない。
• たとえ患者が不適切に検証された治療で副作用がなかったとしても、それを利用することで個人および社会の資源を無駄にする可能性がある。

第3章 多ければ良いとは限らない

• □ 集中的な治療は必ずしも有益ではなく、時には利益よりも害を及ぼすことがある。

第4章 早ければ良いとは限らない

• 診断が早ければ早いほど、将来的に良い結果につながるわけではない。事態がさらに悪くなることもある。
• 検診は、その効果に確かなエビデンスが示された場合に限り導入するべきである。
• 検診を導入しないことが最善の選択となる場合もある。
• 検診の案内を受けた人にはバランスのとれた情報の提供が必要である。
検診の利益は過大評価されることが多い。
検診の不利益は軽視されるか無視されることが多い。
検診の利益、不利益およびリスクに関する良好なコミュニケーションが必要である。

第5章 治療効果の不確実性にどう対処するか

・劇的な治療効果はまれである。
・治療効果に関する不確実性はごく一般的にみられる。
・さまざまな治療の間の効果は通常わずかな差であり、それらを確実に検出すことが重要である。
・治療効果に関する重大な不確実性への答えが誰にもわからない場合は、不確実性を減らすための措置を講じる必要がある。
・治療の効果に関する不確実性を減らすために貢献するように患者自身がもっと多くのことができるだろう。

第6章 正しい治療の検査について

・治療は公正に試験されなければ、有用ではない治療を有用であると判断したり、その逆もまた同様に起こり得るため、治療には公正な検証が求められる。
・治療をあらゆる方法で公正に検証する上で比較は最も基本となるものである。
・治療同士の比較（または治療しない場合と比較）する際は、「同じように見えるもの同士を比較する」という原則が必要不可欠である。
・治療結果を評価する際にはバイアス（偏り）を減らす試みが必要である。

第7章 偶然性を考慮する

・利用できるエビデンスの質と量における信頼性を検討する際には、「偶然性」を考慮する必要がある。
第8章　信頼できる関連エビデンスをすべてレビューすること

- 単一の研究で、医療の治療選択を導くのに十分なエビデンスが得られることはほとんどない。
- 新しい治療の相対的メリットの評価は、関連性があり信頼性の高いすべてのエビデンスの系統的レビューに基づいて行われるべきである。
- 治療を検証した個々の研究同様、系統的レビューではバイアスや偶然性による誤りを導く影響を減らすためにさまざまな措置を講じる必要がある。
- 系統的レビューの結果を考慮しなかったことにより、結果的に患者に回避可能な不利益を被らせ、医療と研究の資源を無駄にした。

第9章　臨床試験への規制はどこまで必要か

- 研究に対する規制は、必要以上に複雑である。
- 現行の研究規制制度は、より良い医療に役立つ公正な治療評価実施の妨げになっている。
- 研究者には規制上の要求事項が負担になる一方で、規制制度は提案された研究の真の必要性についての確証を怠っている。
- 実施を許可された研究が、その後、研究規制によって監視されることや追跡されることはほとんどない。

第10章　良い研究、悪い研究、そして不要な研究

- 不必要な研究は時間、努力、資金、その他の資源の無駄遣いである。そして倫理に反し患者に対して害となります。
- 過去の研究を最新の情報までレビューし、研究の必要性が示され、登録された場合に限り、新たな研究は進められるべきである。
- 新しい研究によるエビデンスは、以前のすべての関連するレビューを更新するものとして用いられるべきである。
- 多くの研究は質が悪く、疑わしい理由を根拠として行われている。
- 研究テーマは、産業界と大学からの歪んだ影響にさらされている。
- 患者にとって重要な疑問は取り上げられないことが多い。
第11章 公正な憲章の実施は皆の責任

- 患者と研究者が一緒に取り組むことは、治療の不確実性を特定し、小さくする。
- 患者からの情報は、研究をより良く導くことができる。
- しかし患者によって、治療の公正な検証を不注意で危うくさせる場合もある。
- 患者団体と製薬業界の関係は、治療効果について偏った情報を生むこともある。
- 効果的な貢献のために、患者は研究についての総合的な知識と偏らない情報への迅速なアクセスが必要である。
- 研究に協働的に参画する「正しい方法」は1つではない。
- 患者の参画は、特定の研究目的に充てられるべきである。
- 患者参画の方法は継続的に発展している。
索引

Ablin RJ, 32
AIDS, xvi, 96, 97, 110, 150, 153, 166
Avandia, 6, 7
Björk-Shiley 心臓弁, 7
Ceoxx, 5
HIV/AIDS, 110
Seroxat, 81
treatments, 46, 147, 148, 149, 158, 162
Vioxx, 5, 6, 68, 141
アスピリン, 5, 18, 44, 73, 76, 125
アプロチニン, 100
イエローカードスキーム, 67, 163
イチゴ状血管腫, 42
イマチニブ, 42
インスリン, 6, 41, 58
インターフェロン, 111, 113
おねだりパワー, 112, 166
かかと穿刺検査, 28
カナダ, vi, 27, 102, 165
カルシウム拮抗薬, 99
がん, ix, xiii, 6, 8, 9, 10, 13, 19, 20, 21, 22, 23, 24, 26, 29, 30, 31, 32, 33, 34, 49, 50, 56, 64, 68, 93, 104, 105, 109, 110, 111, 115, 123, 126, 127, 128
クロスオーバー試験, 61
コクラン共同計画, 107, 127
コトリモキサゾール, 97
コンピューター断層撮影法 (CT), 34, 39
サラミ・スライシング, 81
サリドマイド, 4, 6, 58, 67
ジエチルスチルベストロール (DES), 12, 56, 68
ジドブジン, 110
シルデナフィル (バイアグラ), 56
スパイラル CT, 34
ダイエット, 55
たいてい, 113, 117
タイプ, 6, 7, 21, 30, 32, 42, 46, 98, 105, 109
タバコ, 28, 54
チーム, 38, 73, 74, 75, 103, 114
データ保護法, 88, 89
ニモジピン, 99
ニュージーランド, 9, 102, 134
ニュージーランドの医薬管理機関（PHARMAC）, 9
ハーセプチン, x, 8, 9, 10, 19, 24, 111
バイアスを減らす, 70
ヒストリカル対照群, 58, 59
ヒト血清由来のアルブミン, 134
プラセボ効果, ix
プロプラノロール, 43
ヘキサメトニウム, 84
マーケティングに基づく医療, 79, 164
マスキング, 65
ママのキス, 42
マンモグラフィ, vi, 29, 30
メタアナリシス, 74, 78, 80, 99, 127
メディア, x, xiv, 8, 9, 12, 35, 43, 102, 112, 113, 120
モルヒネ, 58
ランダム化クロスオーバー試験, 61
学術誌の別冊, 102
実務規範, 88, 89
対処する, 3, 38, 41, 46, 47, 49, 50, 51, 80, 95, 100, 162, 168
小児, xvi, 26, 27, 28, 35, 47, 50, 51, 64, 77, 126, 128
希望的思考, 54
幹細胞レスキュー, 23
広告, 1, 34, 103, 112, 113, 126, 127
心房細動, 41
患者が治療法の公正な検証を危うくするとき, 111
患者と研究者, 108, 110, 114, 115, 116
患者にとって重要な質問, 100
患者の研究参加, 109
患者団体, 31, 111, 112, 113, 114, 116, 128
患者活動家, 22, 110
悪い研究, xx, 97, 99
悪性貧血, 41, 43
慢性骨髄性白血病へのイマチニブ治療, 42
手術, xiii, 14, 18, 19, 20, 21, 22, 23, 24, 27, 29, 38, 42, 49, 55, 61, 63, 66, 67, 82, 95, 100, 109, 110, 114, 119, 121, 128
救急処置, 82
新生児, 4, 11, 13, 28, 43, 47, 48, 68, 75, 77, 92, 98, 99, 104, 160
日本, 22, 26, 27, 28
早期分娩, 48
早期分娩に対する抗菌物質, 48
明らかに有益, 28
普及, 12, 36, 108, 136, 139
月見草油, 15, 16, 80
有害作用, 10, 58, 68
有益性と有害性を天秤にかける, 28
未熟児, 47, 74, 77, 99
未熟児の呼吸障害に対するカフェイン, 47
未熟児無呼吸発作, 47
根治的乳房切除術, 21, 22
根治的乳房手術, 109
検査, xiii, 5, 18, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 50, 103, 125, 126, 128, 139
検診は医学的介入, 25
母斑, 41, 42, 44
治療について, xx, 9, 41, 47, 98, 101, 107, 109, 117, 135
治療法の有効性, 93
治療群への割付, 60
治験, 80, 83, 88
疑い, xiii, 20, 41, 66, 67, 68, 125
疑う余地, 65
病気と分類される, 128
病気の時計, 27
発表バイアス, 80
白血病, 42, 50, 64
盲検化, 65, 66
研究エビデンスの導入, xv
研究を改善, 107
硬膜外鎮痛，98
神経芽細胞腫，26, 27, 28
神経芽細胞腫検診，26, 27, 28
積極的な観察，114
経過観察，114
米国，xviii, 5, 6, 7, 11, 12, 21, 22, 23, 29, 31, 32, 34, 39, 44, 45, 51, 56, 64, 66, 74, 80, 87, 102, 109, 110, 111
糖尿病，6, 7, 41, 58, 128, 129, 166
統合失調症，xvii, 97
統計学，72, 73, 74, 76, 80, 82, 122, 163
統計学的に有意な差，72
絶対的リスク軽減率，123
股関節置換術，43
肺がん，33, 34, 58, 105, 127
肺がん検診，33
胸部X線検査，33
脳の外傷性傷害，46
脳卒中，xix, 5, 6, 7, 13, 14, 15, 18, 28, 38, 44, 46, 49, 59, 63, 84, 95, 99, 114, 121, 122, 123, 125
腹部大動脈瘤検診，29
膝変形性関節症，66, 118
臨床試験における患者団体，108
臨床試験指令，88
良い未来の青写真，136
落とし穴，2
血中酸素濃度，80
血栓溶解薬，46, 82
血液代替物，82
規制，xx, 5, 6, 7, 16, 18, 48, 51, 87, 88, 89, 90, 91, 92, 93, 94, 113, 165, 176
試験のために患者を募集，23
輸血，41, 100
逸話，2, 87, 160
遅発性ジスキネジア，97
過剰診断，27, 28, 30, 31, 34, 37, 161
適切な審査方法，90
遺伝子検査，104
遺伝学，104
都合のよい解釈，78, 79
関節炎，5, 53, 58, 66, 68, 101, 118, 119
非ステロイド性抗炎症薬（NSAID），5
頸動脈内膜剥離術，95
骨髄移植，23, 24
Irrationality
Stuart Sutherland

The Patient Paradox
Margaret McCartney

Childbirth in the Age of Plastics
Michel Odent

Mistakes were made (but not by me)
Carol Tavris & Elliot Aronson

for more great books visit
www.pinterandmartin.com
治療を検査する
（TESTING TREATEMENTS）
よりよい研究で、よりよい医療を
第 2 版

特定の治療法が実際に有効かどうかはどのようにわかるでしょうか？その科学的エビデンスはどれくらい信頼できるでしょうか？そして、医療の研究が患者のニーズに最も適合するようにするにはどうすればよいでしょうか？これらは、「治療を検査する」の中で活発かつ有益な方法で取り上げられている疑問のほんの一部です。鮮明な例にあふれている、「治療を検査する」は患者と専門家の両方に影響を与えるでしょう。

初版の成功に基づいて、「治療を検査する」が大幅に改訂され更新されました。第2版には、スクリーニングに関して示唆に富む説明、早期診断が常に良いとは限らないこと、患者の最善の利益に対する研究の過度の規制がどのように働くかを探る新しい章が含まれています。もう1つの新しい章では、患者と臨床医が共同して治療決定を行うことができるように、研究から得た堅実な科学的エビデンスがどのように医療の実践を形作ることができるかを示しています。

本書「治療を検査する」は、現在の研究と将来の治療法を改善するためにすべての人々が関わるよう促し、患者と医師が一緒に取ることのできる実際の手順を概説します。